

January 16, 2013

2013 AMERICAN COMMUNITY SURVEY RESEARCH AND EVALUATION REPORT MEMORANDUM SERIES #ACS13-RER-1

DSSD 2012 AMERICAN COMMUNITY SURVEY RESEARCH MEMORANDUM SERIES ACS12-R-05

MEMORANDUM FOR ACS Research and Evaluation Advisory Group

From: Alfredo Navarro/**Signed**/

Assistant Division Chief, Decennial Statistical Studies Division

Prepared by: John Jordan and Michael Beaghen

American Community Survey Estimation Branch

**Decennial Statistical Studies Division** 

Subject: Analysis of the American Community Survey and Puerto Rico

Community Survey Coverage

Attached is the final American Community Survey Research and Evaluation report for the Analysis of the American Community Survey (ACS) and Puerto Rico Community Survey (PRCS) Coverage. We compared the ACS and PRCS estimates before controls to the 2010 Census counts to obtain estimates of coverage.

If you have any questions concerning this report, please contact Mark Asiala at 301-763-3605, John Jordan at 301-763-2938, or Michael Beaghen at 301-763-2981.

#### Attachment

cc

ACS Research and Evaluation Working Group

A. Navarro (DSSD)

A. Tersine

M. Asiala

P. Joyce (CSRM)

J. G. Robinson (POP)

# Analysis of the American Community Survey and Puerto Rico Community Survey Coverage

FINAL REPORT

John Jordan and Michael Beaghen Decennial Statistical Studies Division



#### 1. Introduction

The Census Bureau measures demographic, social, and economic characteristics of the United States population and housing through the American Community Survey (ACS). Coverage is the measure of completeness of the estimates of housing units (HU), persons living within HUs, and group quarters (GQ). Undercoverage exists when HUs, GQs, or people do not have a chance of being selected in the sample. Overcoverage exists when HUs, GQs, or people have more than one chance of selection in the sample, or are included in the sample when they should not have been. The Census Bureau produces ACS coverage rates for the nation and states every year based on comparisons of the ACS estimates before controls to the Census Bureau's Population Estimates Program (PEP) estimates (U.S. Census Bureau, 2012a). However, a comprehensive and exhaustive analysis of the coverage of the ACS data has not been undertaken since 1999 (Shapiro and Waksberg, 1999), before the full implementation of the ACS. A more current and thorough study of ACS coverage rates may help the Census Bureau focus its resources better by identifying areas that may warrant special efforts.

In this report we estimated ACS coverage by comparing the ACS estimates before controls to the 2010 Census counts. The 2010 Census offered a unique opportunity to measure the coverage of the recently produced 2010 ACS 1-year and 2006-2010 ACS 5-year estimates, as it provided an up-to-date listing of housing units and population for comparison. Previous published measures of the ACS coverage were based on comparisons to the PEP estimates, which were themselves based on the Census 2000 and not as up to date. Furthermore, comparing to the 2010 Census counts allowed for detailed estimates of coverage of small geographies or race/ethnic groups not afforded by comparisons to the PEP.

An earlier report appeared on the coverage of the American Indian/Alaska Native (AIAN) persons and of people living in AIAN<sup>1</sup> areas. This earlier report used essentially the same methodology as the current report and its results are included here. The current report examines person coverage of basic demographics groups, housing unit coverage, and coverage for the national, state, and tract-level geographies. It also includes a separate analysis of the coverage of HUs and persons in the Puerto Rico Community Survey (PRCS).

## 2. Background

The Census Bureau regularly measures the coverage of its surveys as part of its evaluations of data quality. There is a long history of decennial census coverage evaluation (National Research Council, 2004, and the U.S. Census Bureau, 2012b) going back to the 1940 decennial census. Most recently, the 2010 Census coverage was measured by the Census Coverage Measurement (CCM) program (Mule, 2012, and Mule and Konicki, 2012). The Census Bureau annually

1

<sup>&</sup>lt;sup>1</sup> AIAN areas include but are not restricted to American Indian reservations and trust lands, tribal jurisdiction statistical areas, Alaska native regional corporations, Alaska native village statistical areas, and tribal designated statistical areas. Note further that AIAN areas do not include Hawaiian homelands. For a complete listing and detailed description of types of AIAN areas go to the Census Bureau webpage, <a href="http://www.census.gov/geo/www/2010census/gtc/gtc">http://www.census.gov/geo/www/2010census/gtc/gtc</a> aiannha.html.

publishes ACS quality measures on the ACS Web site (U.S. Census Bureau, 2012c), including national coverage rates of the total resident population broken down by sex and several race/ethnic groups, the GQ population, and state-level estimates of coverage of the total resident population broken down by sex, and of housing units. Similarly, the Census Bureau publishes monthly coverage rates for the Current Population Survey (CPS) by three major race/ethnic groups (U.S. Census Bureau, 2012d).

Historical patterns of decennial census coverage measurement show greater coverage for non-Hispanic whites, for females, and for persons 65 years and older. Similarly, we have seen greater coverage in the CPS for non-Hispanic whites. While coverage rates by geography are not as well studied, the decennial census has a history of differential coverage across regions, with midwestern states having the highest coverage, followed by states in the northeast (National Research Council, 2004), and with several southern and western states having had historic patterns of lower coverage. The coverage ratios of persons in the CPS are consistently lower than those of the ACS (U.S. Census Bureau, 2012d).

For perspective, we provide in Table 1 the historical coverage ratios for the ACS going back to 2005 when the ACS housing unit sample was implemented in its full size (Table 1 shows only a subset of the historical coverage rates available on the Census Bureau Web site; U.S. Census Bureau, 2012c). The 2005 data year is comparable to later years for HUs only as it does not include the GQ population, which was not included in the ACS until 2006. We point out that the coverage of HUs and of total resident population was higher in 2010 than in previous years. This was because the 2010 ACS sample frame benefited from the 2010 Census address canvassing operation (U.S. Census Bureau, 2010). Further, the 2010 PEP estimates to which the pre-controlled ACS estimates were compared were more accurate as they were based on the 2010 Census. Another reason for higher HU coverage in 2010 was that, in addition to correctly added HUs, the address canvassing deleted many units and re-added them. Both the deleted and added units were potentially on the ACS sample frame. Ideally, the ACS should have identified these as duplicated address listings, but we have reason to suspect that it did not do so consistently. Many of these potentially duplicated HUs may have been identified by the ACS as vacant, which may be a contributing factor to the ACS's greater estimate of the vacancy rate than the 2010 Census (Cresce, 2012). The causes for the difference between the ACS vacancy rate and the 2010 Census rate, and the impact of the 2010 Census on the 2010 ACS are currently being researched at the Census Bureau (Hefter and Anderson, 2012).

**Table 1**: Historic ACS Coverage Ratios<sup>2</sup>

| Year | Housing Units | Total Resident | Male  | Female |
|------|---------------|----------------|-------|--------|
|      |               | Population     |       |        |
| 2010 | 0.991         | 0.946          | 0.940 | 0.953  |
| 2009 | 0.989         | 0.942          | 0.930 | 0.953  |
| 2008 | 0.987         | 0.938          | 0.926 | 0.950  |
| 2007 | 0.985         | 0.942          | 0.932 | 0.952  |
| 2006 | 0.987         | 0.944          | 0.934 | 0.953  |
| 2005 | 0.985         | 0.951          | 0.939 | 0.962  |

Source: 2005-2010 American Community Survey 1-year Data and 2005-2010 Population Estimates Program Estimates

The ACS estimates are controlled to equal the PEP estimates by age, sex, race, and Hispanic origin at the weighting area level. An ACS weighting area is a county or a set of less populous counties that meet a minimum population or number of person interviews requirement. Adjustment of the ACS estimates to agree with PEP controls corrects for coverage error. (It also reduces the sampling error, and makes ACS estimates consistent with other published Census Bureau estimates). Consequently, the coverage error we measure in this study has been reduced by controlling. Ultimately, the measures of coverage the pre-controlled ACS estimates that we present pertain to the ACS sampling frame, the ACS data collection, and the ACS interviewing, and less to the published ACS estimates. We can expect the controls to be most effective in the year of a decennial census or those just following one, as the PEP will be most accurate in those years. The efficacy of the controls in reducing coverage error has been explored in Asiala, Beaghen, and Albright (2008).

# 3. Methodology

We estimated coverage by determining the ratio of ACS pre-controlled estimates to 2010 Census counts<sup>3</sup>. To the extent this coverage ratio was larger than 1.0, we had overcoverage. To the extent it was below 1.0, we had undercoverage. All comparisons entailed hypothesis tests, with standard errors (SE) and margins of error (MOE) calculated by the production ACS successive differences replication methodology (U.S. Census Bureau, 2009).

## **3.1** Coverage of Housing Units

We investigated HU coverage for the 2010 ACS 1-year estimates, calculating the coverage ratio for the nation and states. We calculated the coverage ratio as the ratio between the pre-controlled ACS estimate and the 2010 Census count. These pre-controlled weights reflected the inverse of the probability of selection, and the non-interview adjustments, in addition to other

<sup>2</sup> The ACS Sample Size and Data Quality Web site shows coverage rates in percent, which are coverage ratios multiplied by 100.

<sup>&</sup>lt;sup>3</sup> Estimates of coverage in this study were calculatedly differently than how they were calculated for the ACS Sample Size and Data Quality Web site, as the latter calculated coverage by comparing the ACS estimates to the 2010 Population Estimates Program estimates.

finer weight adjustments, but not the controls to the PEP estimates, the final housing unit adjustment factor, or rounding. See U.S. Census Bureau (2009) for details on the ACS HU weighting.

Coverage Ratio = 
$$\frac{2010 \text{ 1-year ACS pre-controlled estimate(number of housing units)}}{2010 \text{ Census count(number of housing units)}}$$

For the nation, we compared the coverage between categories of HUs such as owner versus renter (in classifying owner versus renter, we excluded units occupied without paying rent, vacant units that were recreational, migratory workers, or other vacant), single unit versus multi-unit, and occupied and vacant.

We examined the distribution of the coverage ratios of HUs by counties, looking at the means, medians and quartiles. In addition to a national-level analysis, we conducted an analysis stratified by the total population of the county. These strata included those counties for which the ACS 1-year estimates are published (65,000 or more), those counties for which 3-year but not 1-year ACS estimates are published (20,000 to 64,999), and those counties for which only 5-year ACS estimates are published (below 20,000). This smallest stratum was further subdivided into counties with 0-4,999, 5,000-9,999, and 10,000-19,999. For this analysis we used the 1-year ACS estimates because using the 3-year or 5-year data would have confounded population change over time with coverage. (See Section 6 on limitations for discussion on this matter).

# **3.2** Coverage of the Household Population

We investigated the coverage of the household population for the 2010 ACS 1-year results for the nation and states. We also estimated how much of the household person coverage error was attributable to HU error. Similar attributions of person coverage error to HU coverage error have been done for the decennial census, such as Bray (2012), who estimated overcoverage in the 2010 Census due to HU duplication. We calculated the coverage as the ratio between the pre-controlled ACS estimate and the 2010 Census count. These pre-controlled weights reflected the HU weighting adjustments described in Section 3.1.

To estimate the household person coverage error attributable to within-household person coverage error and to HU coverage error, we factored the total coverage ratio as follows.

Total-coverage ratio = within-household-coverage ratio × HU coverage ratio

The within-household-coverage ratio was calculated as the ratio of the pre-controlled household population total over the total number of persons weighted by each person's HU weight.

A more direct way to estimate the within-household-coverage and person coverage due to HU coverage would have been to multiply the estimated coverage error (the difference between the uncontrolled ACS and the 2010 Census count) for occupied HUs by the estimated persons per household. However, we chose not to take this approach because inconsistencies in the way the 2010 Census and ACS reported vacant and occupied HUs might have led to unsound results (see the discussion in Section 2 on ACS measurement of vacancy rates).

## **3.3** Group Quarters Population Coverage

To determine coverage of the GQ population, we calculated the coverage ratio as the ratio of the 2010 pre-controlled ACS estimate of the GQ Population to the 2010 Census count of the GQ population. We did this for the nation, states, and Puerto Rico and by the seven major GQ types. These pre-controlled weights reflected the inverse of the probability of selection and non-interview adjustments, but not controls to the PEP nor the rounding. See U.S. Census Bureau (2009) for details on the ACS GQ person weighting.

Coverage Ratio=
$$\frac{2010 \text{ 1-year ACS pre-controlled estimate(GQ Population)}}{2010 \text{ Census count(GQ Population)}}$$

## **3.4** Coverage of the Total Resident Population

For the nation and each state, we determined the coverage ratios for various demographic groups defined by race, ethnicity, age, and sex, as follows below. For the nation we determined coverage ratios for additional race/ethnic combinations not shown below. For Puerto Rico we determined only the sex and age group coverage ratios. Note that the total resident population refers to the combined household and GQ populations.

#### **Age Group Tabulations**

0-4, 5-14, 15-17, 18-19, 20-24, 25-29, 30-34, 35-44, 45-49, 50-54, 55-64, 65-74, 75 or older

#### **Race/Ethnicity Tabulations**

Hispanic any race

Non-Hispanic White alone or in combination

Non-Hispanic Black alone or in combination

Non-Hispanic AIAN alone or in combination

Non-Hispanic Asian alone or in combination

Non-Hispanic Native Hawaiian and Other Pacific Islander alone or in combination

Non-Hispanic Some Other Race alone

We calculated the coverage ratio as the ratio of the 2010 ACS 1-year pre-controlled estimate of the demographic group to the 2010 Census count of that same demographic group. We also did this for the largest 20 AIAN tribal groupings, for specific Hispanic origin groups, and for the six

largest Asian groups. These pre-controlled weights reflected the adjustments described in Sections 3.1 and 3.3.

Coverage ratio= 
$$\frac{2010 \text{ 1-year ACS pre-controlled estimate (demographic group)}}{2010 \text{ Census count (demographic group)}}$$

3.5 Coverage of American Indian/Alaska Native Persons and of the Population in American Indian/Alaska Native Areas

A subset of the analyses described in this section was released in an earlier Census Bureau report. Again, to produce estimates of coverage, we compared the 2010 ACS 1-year estimates to the 2010 Census counts. We estimated the coverage for AIAN areas aggregated over the nation and for the 20 largest AIAN areas individually (according to the 2010 Census). For the estimates of AIAN areas aggregated over the nation, we determined the coverage ratios for sex, for the same age groups which we did for the nation, and the race groups shown below (taken together AIAN alone and AIAN in combination only equal AIAN alone or in combination). Note that all coverage ratios were calculated for the total resident population.

# **Race Group Tabulations**

AIAN alone or in combination AIAN alone AIAN in combination only

We calculated the coverage ratios as the ratio of the 2010 ACS 1-year pre-controlled estimate of the demographic group to the 2010 Census count of that same demographic group. The pre-controlled estimates reflected the same adjustments described in Sections 3.1 and 3.3.

When we examined the AIAN person coverage for geographies such as states and AIAN areas we produced coverage ratios for the race group "AIAN alone and in combination with one or more other races". We preferred it to race group "AIAN alone" because it was more robust to race reporting discrepancies between the 2010 Census and the ACS. This was because persons who answered differently in the ACS and 2010 Census on AIAN alone versus AIAN alone or in combination would agree on AIAN alone or in combination. However, when we examined the person coverage of the 20 largest AIAN tribal groupings we produced coverage ratios for "AIAN alone, one tribal group reported", because these are the detailed tribal groupings for which the ACS releases estimates. Note that the 2010 Census Brief, "The American Indian and Alaska Nation Population: 2010", provides estimates of totals for both of these categorizations of AIAN persons.

We also determined the nationwide coverage of ACS estimates of the 20 largest AIAN tribal groupings. In addition to calculating the coverage as the ratio of the pre-controlled 2010 ACS 1-year estimate and the 2010 Census count, we also calculated it as the ratio of 2006-2010 ACS 5-year pre-controlled estimates of the number of AIAN persons to the 2010 Census count to obtain more reliable estimates of coverage for smaller tribal groupings.

## **3.6** Differences in Coverage Amongst Tracts

In the tract-level analyses we searched for area-level coverage effects, that is, area effects that went beyond what we already knew about the type of HU or the demographics of the population. For example, we hypothesized that coverage might differ in more densely populated areas from less densely populated areas. This area effect would not have been detected in any of our measures that look at the characteristics of HUs, GQs, or persons.

For the tract-level analysis we classified tracts by several characteristics of interest: population density, owner/renter, and racial homogeneity (based on 2010 Census data). We calculated the coverage ratios as the ratio of the 2006-2010 ACS 5-year pre-controlled estimate with the 2010 Census count. The potential confounding of change over time by using the 5-year data was not considered a serious limitation for this analysis because we were interested in the relative comparisons between the different groups of tracts. That said, one must be cognizant of this limitation when examining the data (see the discussion in Section 6).

The groupings of tracts were broken down as indicated below. We conducted a univariate analysis for each of these classifications.

a. **Population Density**: We determined the density of the population as the ratio of the 2010 Census count of the number of people in that tract divided by the area of that tract. We then characterized the tracts as dense (highest third), moderately dense (middle third), and sparse (lowest third).

$$Density = \frac{2010 \text{ Census count}}{Area \text{ of tract}}$$

- b. **Owner/Renter**: We categorized tracts by percentage of renter in each tract. These categorizations were: predominantly renter (percentage of renter was at least 60 percent), mixed (percentage of renter was at least 40 percent and less than 60 percent), and predominantly owner (percentage renter was less than 40 percent).
- c. Racial/Ethnic Homogeneity: The first step in determining racial/ethnic homogeneity was assigning persons in the 2010 Census to one of seven racial/ethnic groups (Hispanic, non-Hispanic white, non-Hispanic Black, non-Hispanic Asian, non-Hispanic AIAN, non-Hispanic Native Hawaiian and Other Pacific Islander (NHPI), and non-Hispanic Some Other Race). If someone was Hispanic, we categorized them as Hispanic regardless of race. Otherwise if they were non-Hispanic, we simply categorized them by their race group. We then categorized tracts into three groups: homogeneous (largest racial/ethnic group described above made up at least 75 percent of the tract in the 2010 Census), mostly homogeneous (largest racial/ethnic group made up between 50 and 75 percent of the tract), and heterogeneous (largest racial/ethnic group made up less than 50 percent of the tract).

d. Coverage of Blacks by Degree of Concentration: We investigated the hypothesis that coverage of Blacks was lower in areas where Blacks were more concentrated (Shapiro and Waksberg, 1999). We categorized tracts into three groups by the proportion of the population who were non-Hispanic Black alone or in combination: 75 percent or more, 50 percent – 75 percent and less than 50 percent. We then measured and compared the ratio of coverage of non-Hispanic Blacks alone and in combination in each these three categories.

Note that in these tract-level analyses, we investigated coverage for the total resident population, without further breakdown by household or GQ residency, or by demographic groups.

## 4. Analysis of Coverage of the Puerto Rico Community Survey

We calculated separate coverage estimates for the PRCS. Thus throughout this study national estimates excluded Puerto Rico and estimates for Puerto Rico are not found in tables with states. To better illuminate HU coverage in the PRCS we compared the pre-controlled 2009 PRCS 1-year estimate to the 2010 Census count. Since the HU sample frame for the PRCS was not updated between decennial censuses the coverage estimate is meaningful only the year of the decennial census or perhaps the next year. In the years thereafter the coverage of HUs becomes progressively worse. Thus, the 2009 comparison is the least favorable to the PRCS. However, it better illustrates the PRCS HU coverage we can expect in the years following the 2010 Census.

For the PRCS coverage we did not examine race or ethnicity coverage in the PRCS, since the great majority of people in Puerto Rico are Hispanic. Consequently, the analysis of PRCS person coverage was limited to examining the coverage of sex and age groups, where we used the same age groups as defined for the stateside analysis.

## 5. Calculation of Variances and Hypothesis Testing

To calculate variances of ACS estimates or functions of variances such as the SE and the MOE, the method of successive difference replication is employed (U.S. Census Bureau, 2009). In this study we used the replicates corresponding to the pre-controlled weights. Because the census counts are constants, the estimated variance of the coverage ratio, C, was the ACS estimate of variance divided by the census count squared.

$$Var(C) = Var\left(\frac{ACS Estimate}{Constant}\right) = \frac{Var(ACS Estimate)}{Constant^2}$$

The general formula for the variance of a difference follows, where  $C_1$  and  $C_2$  are the two coverage ratios of interest.

$$Var(C_1-C_2) = Var(C_1) + Var(C_2) - 2Covariance(C_1,C_2)$$

When the estimates of coverage ratios for two groups are independent, the variance of the difference between two coverage ratios reduces to the sum of the variance of the two coverage

ratios,  $C_1$  and  $C_2$ . Estimated coverage ratios are independent if we are comparing different geographies; otherwise there is a non-zero covariance term. For computational ease we used approximations for non-independent comparisons. If we compared coverage ratios for different groups within the same geography, then there was negative covariance. For three or more groups we ignored this covariance. With just two groups, e.g., male and female, the correlation is -1.0 and we approximated by assuming the covariance equal to the larger of the two estimated variances. If a smaller geography or group of geographies was a subset of a larger geography (e.g., AIAN areas versus the nation), then the covariance is weakly positive. This covariance was also ignored in the calculations.

Census Bureau policy requires 90 percent confidence, so for a difference to be statistically significant, the absolute value of the test statistic must be greater than 1.645. When we made multiple comparisons between observations, we employed the Bonferroni method (Neter, Wasserman, and Kutner, 1985), which adjusts the cutoff value upward to account for the multiple comparisons.

#### 6. Limitations

We recognize several important limitations that readers must be aware of. An obvious limitation of the coverage ratio calculated by comparing to the 2010 Census was that the Census results themselves suffer from coverage error (Mule, 2012). If the ACS and the 2010 Census had equal coverage error for a given group, the coverage ratio would nonetheless be 1.0. That said, we believe the 2010 Census coverage error was generally small enough to make our method useful.

Further, there were data collection differences between the ACS and the 2010 Census that lead to differences in estimates which were not related to coverage. As discussed in the background (Section 2), there were differences in the 2010 ACS 1-year and 2010 Census classification of HUs as vacant or occupied, which affected the interpretation of HU coverage. Importantly, there were differences in coverage ratios of specific race groups that are likely attributable to differences in race reporting between the ACS and 2010 Census. Some estimates of coverage of race and ethnic groups were confounded by these phenomena and cannot be interpreted as measures of coverage. Previous research on race reporting differences includes Bennett and Griffin (2002), and Raglin and Leslie (2002), who examined race and ethnicity reporting differences between the Census 2000 Supplementary Sample (the pilot study for the ACS) and the Census 2000. Also, Pinal and Schmidley (2005) examined race and ethnicity reporting differences between the CPS and the Census 2000.

Another limitation of this research that requires discussion involved different temporal frames of reference. The 2010 Census counts refer to a point in time, April 1, 2010, whereas the ACS estimates are period estimates. These differences were more severe for the comparisons to the 5-year estimates. The coverage differences we saw between the pre-controlled 2006-2010 ACS 5-year estimates and the 2010 Census were confounded with any changes over the 5-year period. This limitation affected the tract-level analyses we conducted, which were made strictly with the 5-year estimates. We can see the trend in total population in Table 2.

**Table 2:** ACS Estimates of Total Population for the United States

| Year | Total Population |
|------|------------------|
| 2006 | 299,398,484      |
| 2007 | 301,621,157      |
| 2008 | 304,059,724      |
| 2009 | 307,006,550      |
| 2010 | 309,349,689      |

Source: 2006-2010 American Community Survey 1-year Data

The confounding of time with estimates of coverage for the 2010 ACS 1-year estimates was smaller, though we would expect differences between the April 1, 2010 Census date and the January 1, 2010 through December 31, 2010 time period which the pre-controlled ACS estimates reflected.

Lastly, it must be emphasized that the estimates of coverage ratios were subject to sampling variation. In particular, the reliability of the ACS data for smaller populations or for smaller geographies requires attention. For some of the geographic or demographic breakdowns these sampling errors could be large; readers must consider the MOE when examining coverage ratios. While we attempted to make this study both comprehensive and detailed, we had to be conscientious of the reliability of the estimates. Thus, the most detailed demographic breakdowns were for the national level estimates. For smaller geographies, such as AIAN area or state, we looked at more limited univariate breakdowns of demographics. In sum, both nonsampling and sampling errors affected the coverage ratios shown in this report and their interpretation.

#### 7. Results and Discussion

Throughout this section, when we say that an estimate is undercovered or overcovered, it is understood that the difference of the estimate of the coverage ratio from 1.0 was statistically significant at the 90 percent confidence level.

# **7.1** Coverage of Housing Units

In Table 3 we see there was a small undercoverage of HUs, with a coverage ratio of 0.991.

**Table 3**: Coverage of Housing Units for the United States

| 2010 Census Count of | 2010 ACS 1-year |                |       |
|----------------------|-----------------|----------------|-------|
| HUs                  | Estimate of HUs | Coverage Ratio | MOE   |
| 131,704,730          | 130,556,040     | 0.991          | 0.001 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 4 we see there was a net undercoverage of occupied housing units in the ACS (0.973). In contrast, there was a net overcoverage of the vacant housing units in the ACS (1.135).

However, the higher coverage ratio for vacant units was most likely an artifact of differences in ACS and 2010 Census field determinations of vacancy status. The ACS had a higher vacancy rate than the 2010 Census, which is a topic of ongoing research; see Hefter and Anderson (2012) and Cresce (2011).

Table 4: National Housing Unit Coverage by Occupancy Status

|          | 2010 Census<br>Number of HUs | Coverage<br>Ratio | MOE   |
|----------|------------------------------|-------------------|-------|
| Occupied | 116,716,292                  | 0.973             | 0.002 |
| Vacant   | 14,988,438                   | 1.135             | 0.010 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

Table 5 shows HU coverage by type of structure (single unit versus multi-unit). We see there was a net undercoverage of single-unit HUs in the ACS, whereas there was a net overcoverage of mult-unit housing units in the ACS. This is not consistent with 2010 Census results, which show better coverage for single units than multi-units (Mule and Konicki, 2012). The difference in coverage seen between single units and multi-units may result from classification differences by ACS and 2010 Census field staff and merits more research.

**Table 5**: National Housing Unit Coverage by Type of Structure

|             | 2010 Census<br>Number of HUs | Coverage<br>Ratio | MOE   |
|-------------|------------------------------|-------------------|-------|
| Multi-unit  | 30,906,706                   | 1.111             | 0.003 |
| Single unit | 100,798,024                  | 0.955             | 0.002 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

Table 6 shows the coverage ratios by owner and renter occupied HUs. Both owner and renter HUs were undercovered at the national level (0.973 and 0.976; the difference is not statistically significant).

**Table 6**: National Coverage of Housing Units by Tenure

|        | 2010 Census Count | Coverage Ratio | MOE   |
|--------|-------------------|----------------|-------|
| Owner  | 80,330,466        | 0.973          | 0.003 |
| Renter | 40,919,739        | 0.976          | 0.003 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

Table 7 shows the HU coverage ratios by state. Of the 51 state or state equivalents, 36 showed undercoverage, seven showed overcoverage, while there were eight whose observed coverage ratio was not significantly different than 1.0. The range of the coverage ratios was relatively small, ranging from 0.965 for Wyoming to 1.024 for Delaware. There was no apparent regional pattern to the state coverage ratios of HUs.

 Table 7: State Coverage of Housing Units

| Tubic | 7. State Coverage of I |          | 165   |
|-------|------------------------|----------|-------|
| State | 2010 Census            | Coverage | MOE   |
|       | Number of HUs          | Ratio    |       |
| AL    | 2,171,853              | 0.974    | 0.005 |
| AK    | 306,967                | 0.975    | 0.010 |
| AZ    | 2,844,526              | 0.970    | 0.004 |
| AR    | 1,316,299              | 0.987    | 0.006 |
| CA    | 13,680,081             | 0.991    | 0.001 |
| CO    | 2,212,898              | 0.990    | 0.004 |
| CT    | 1,487,891              | 0.994    | 0.004 |
| DE    | 405,885                | 1.024    | 0.011 |
| DC    | 296,719                | 0.994    | 0.010 |
| FL    | 8,989,580              | 0.976    | 0.002 |
| GA    | 4,088,801              | 0.978    | 0.004 |
| HI    | 519,508                | 0.982    | 0.009 |
| ID    | 667,796                | 0.990    | 0.007 |
| IL    | 5,296,715              | 0.999    | 0.003 |
| IN    | 2,795,541              | 0.995    | 0.003 |
| IA    | 1,336,417              | 0.989    | 0.005 |
| KS    | 1,233,215              | 0.993    | 0.005 |
| KY    | 1,927,164              | 0.996    | 0.005 |
| LA    | 1,964,981              | 0.976    | 0.005 |
| ME    | 721,830                | 1.022    | 0.006 |
| MD    | 2,378,814              | 0.991    | 0.003 |
| MA    | 2,808,254              | 1.000    | 0.003 |
| MI    | 4,532,233              | 0.998    | 0.002 |
| MN    | 2,347,201              | 0.989    | 0.003 |
| MS    | 1,274,719              | 1.000    | 0.007 |
| MO    | 2,712,729              | 0.990    | 0.004 |
| MT    | 482,825                | 0.976    | 0.007 |
| NE    | 796,793                | 0.995    | 0.006 |
| NV    | 1,173,814              | 0.971    | 0.006 |
| NH    | 614,754                | 1.003    | 0.007 |
| NJ    | 3,553,562              | 0.999    | 0.003 |
| NM    | 901,388                | 0.991    | 0.006 |
| NY    | 8,108,103              | 1.003    | 0.002 |
| NC    | 4,327,528              | 0.980    | 0.003 |
| ND    | 317,498                | 0.987    | 0.009 |
| ОН    | 5,127,508              | 0.999    | 0.003 |
| OK    | 1,664,378              | 0.984    | 0.004 |
| OR    | 1,675,562              | 0.996    | 0.005 |
|       | 010 American Community |          |       |

**Table 7 Continued:** State Coverage of Housing Units

| State | 2010 Census   | Coverage | MOE   |
|-------|---------------|----------|-------|
| State | Number of HUs | Ratio    | MOE   |
| PA    | 5,567,315     | 0.995    | 0.002 |
| RI    | 463,388       | 1.006    | 0.008 |
| SC    | 2,137,683     | 0.985    | 0.005 |
| SD    | 363,438       | 0.991    | 0.009 |
| TN    | 2,812,133     | 0.994    | 0.004 |
| TX    | 9,977,436     | 0.993    | 0.002 |
| UT    | 979,709       | 1.009    | 0.006 |
| VT    | 322,539       | 0.984    | 0.008 |
| VA    | 3,364,939     | 0.988    | 0.003 |
| WA    | 2,885,677     | 1.003    | 0.003 |
| WV    | 881,917       | 1.013    | 0.007 |
| WI    | 2,624,358     | 0.994    | 0.003 |
| WY    | 261,868       | 0.965    | 0.013 |

In Table 8 we see the distribution of the coverage ratios of HUs for counties. We see a general pattern of lower coverage for smaller counties. The lowest mean coverage ratio, 0.952, was observed for those with populations below 5,000. The coverage ratio for counties with populations of 20,000-64,999, 0.988, was higher than that for counties with populations of 1-19,999, 0.967; and the coverage of counties with 65,000+, 0.993, was higher than that for 20,000-64,999. Not surprisingly, there was a greater dispersion in the coverage ratios for smaller counties. Note that we used 2010 ACS 1-year data only, including counties of population size 1-64,999 for which only multi-year ACS estimates are released. We did this because we did not want to confound population growth over time with coverage (see Section 6, Limitations). However, analyses with 5-year data showed a similar pattern with progressively lower estimates of coverage for smaller counties.

**Table 8:** County Distribution of Housing Unit Coverage

| Population of County | First<br>Quartile | Median | Third<br>Quartile | Mean  | MOE of<br>Mean | Number of counties |
|----------------------|-------------------|--------|-------------------|-------|----------------|--------------------|
| <u> </u>             | _                 |        | _                 |       |                |                    |
| 65,000+              | 0.983             | 0.995  | 1.005             | 0.993 | 0.001          | 807                |
| 20,000-64,999        | 0.962             | 0.993  | 1.019             | 0.988 | 0.002          | 1,036              |
| 1-19,999             | 0.918             | 0.976  | 1.025             | 0.967 | 0.003          | 1,300              |
| 10,000-19,999        | 0.934             | 0.979  | 1.020             | 0.971 | 0.005          | 604                |
| 5,000-9,999          | 0.919             | 0.983  | 1.030             | 0.973 | 0.008          | 393                |
| 1-4,999              | 0.882             | 0.957  | 1.028             | 0.952 | 0.014          | 303                |
| All counties         | 0.955             | 0.991  | 1.014             | 0.981 | 0.001          | 3,143              |

## **7.2** Coverage of the Household Population

In this section we present coverage ratios of the household population for the nation and states. Further, we factored the household population coverage ratio into two multiplicative components: the within-household coverage and the HU coverage. We did this factoring to understand to what extent the household population coverage error was due to within-household coverage error and to what extent it was due to HU coverage error.

**Table 9**: National Household Population Coverage for 2010 ACS 1-year Estimates

|                    | ACS Estimate             |             |          |           |          |
|--------------------|--------------------------|-------------|----------|-----------|----------|
| ACS Pre-controlled | after Accounting for     |             |          | Within-   |          |
| Estimate of the    | Housing Unit Coverage    | 2010 Census | Overall  | household | Housing  |
| Household          | Error but not Within-    | Household   | Coverage | Coverage  | Unit     |
| Population         | household Coverage Error | Population  | Ratio    | Ratio     | Coverage |
| (MOE)              | (MOE)                    |             | (MOE)    | (MOE)     | (MOE)    |
| 286,215,134        | 288,759,541              | 300,758,215 | 0.952    | 0.960     | 0.991    |
| (488,813)          | (369,644)                |             | (0.002)  | (0.002)   | (0.001)  |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

We determined the overall coverage ratio of the household population, 0.952, by dividing the ACS pre-controlled estimate of the household population, 286,215,134, by the 2010 Census count of the household population, 300,758,215. We calculated the within-household coverage ratio, 0.960, by dividing the ACS estimate after accounting for HU coverage error but not within-household coverage error 288,759,541, by the census household population count, 300,758,215. We calculated the coverage because of HU coverage, 0.991, by dividing the ACS pre-controlled estimate of the household population, 286,215,134, by the ACS estimate after accounting for HU error but not within-household coverage error, 288,759,541.

In Table 9 we see that the household population (0.952) was undercovered at the national level. This coverage error was equal to the within-household population coverage error (0.960) multiplied by the housing unit coverage error (0.991). Thus most of the coverage error is attributable to the within-household coverage error.

From Table 9 we can determine that there were an estimated 2,544,407 people who were not covered because of HU error; this is the difference between the ACS estimate after accounting for housing unit error but not within-household coverage error, 288,759,541, and the ACS pre-controlled estimate of the household population, 286,215,134. Further, there were an estimated 11,998,674 people who were not counted because of within-household coverage error; this is the difference between the 2010 Census count of the household population, 300,758,215, the ACS estimate after accounting for housing unit error but not within-household coverage error, 288,759,541.

In Table 10, we see the coverage ratios for the household population in each state broken down in the same manner as in Table 9. The overall coverage ratios for the household population ranged from 0.882 in Washington DC to 0.999 in Utah. Note that most of the coverage error in Washington DC was due to within-household coverage error. Subtracting as we did with the national estimates for Table 9, we can determine that there were an estimated 63,201 people in Washington DC who were not counted because they were missed from the within HU coverage, while there were only an estimated 3,154 who were not counted because of HU coverage error.

 Table 10: State Household Population Coverage

| Tubic    |                 | ola i opa  | lation Coverage              |        |            | 1      |       |
|----------|-----------------|------------|------------------------------|--------|------------|--------|-------|
|          | ACS Pre-        |            | ACS estimate                 |        |            |        |       |
|          | controlled      |            | after Accounting for         |        | Census     | Cover- |       |
| State    | Estimate of the | MOE        | Housing Unit Error but       | MOE    | Household  | age    | MOE   |
|          | Household       | WOL        | not Within-household         |        | Population | Ratio  |       |
|          | Population      |            | Coverage Error               | ı      |            |        |       |
| AL       | 4,261,069       | 48,416     | 4,378,751                    | 43,745 | 4,663,920  |        | 0.010 |
| AK       | 657,661         | 16,421     | 674,943                      |        | 683,879    |        | 0.024 |
| AZ       | 5,749,863       |            |                              |        | 6,252,633  | 1      | 0.008 |
| AR       | 2,679,512       | -          |                              |        | 2,836,987  |        | 0.012 |
| CA       | 34,448,180      | -          | 34,748,701                   |        | 36,434,140 |        | 0.003 |
| CO       | 4,757,062       | 43,202     | 4,800,975                    |        | 4,913,318  | 0.968  | 0.009 |
| CT       | 3,323,734       | 36,720     | 3,347,308                    |        |            | 0.962  | 0.011 |
| DE       | 833,562         | 20,487     | 819,423                      | 17,553 | 873,521    | 0.954  | 0.023 |
| DC       | 495,347         | 11,700     | 498,501                      | 10,751 | 561,702    | 0.882  | 0.021 |
| FL       | 16,474,489      | 84,927     | 16,887,221                   | 76,039 | 18,379,601 | 0.896  | 0.005 |
| GA       | 8,682,204       | 70,086     | 8,876,586                    | 57,959 | 9,434,454  | 0.920  | 0.007 |
| HI       | 1,216,563       | 23,675     | 1,240,691                    | 23,266 | 1,317,421  | 0.923  | 0.018 |
| ID       | 1,493,359       | 25,758     | 1,504,742                    | 22,868 | 1,538,631  | 0.971  | 0.017 |
| IL       | 12,057,469      | 63,159     | 12,081,373                   | 57,852 | 12,528,859 | 0.962  | 0.005 |
| IN       | 6,066,219       | 47,920     | 6,105,881                    | 42,689 | 6,296,879  | 0.963  | 0.008 |
| IA       | 2,893,423       | 27,121     | 2,928,192                    | 23,043 | 2,948,243  |        | 0.009 |
| KS       | 2,654,255       |            |                              |        | 2,774,044  |        | 0.011 |
| KY       | 4,048,778       | 42,729     | 4,064,649                    | 36,943 | 4,213,497  | 0.961  | 0.010 |
| LA       | 4,108,153       |            | 4,206,613                    | 36,654 |            |        | 0.010 |
| ME       | 1,285,504       |            | 1,257,237                    |        | 1,292,816  |        | 0.014 |
| MD       | 5,368,809       | 49,625     |                              |        | 5,635,177  |        | 0.009 |
| MA       | 6,129,806       |            |                              |        | 6,308,747  |        | 0.008 |
| MI       | 9,298,587       | 54,783     | 9,319,329                    | 50,793 | 9,654,572  | 0.963  | 0.006 |
| MN       | 5,051,189       |            | 5,108,614                    |        |            |        | 0.008 |
| MS       | 2,733,748       |            | 2,732,371                    |        | 2,875,333  |        | 0.014 |
| MO       | 5,589,271       | · ·        | , ,                          |        | 5,814,785  |        | 0.008 |
| MT       | 906,770         | ·          |                              |        | 960,566    |        |       |
| NE       | 1,732,331       |            |                              | 1      | 1,775,176  |        |       |
| NV       | 2,466,905       |            |                              |        | 2,664,397  |        | 0.012 |
| NH       | 1,259,039       |            |                              |        | 1,276,366  |        | 0.016 |
| NJ       | 8,288,840       |            | 8,291,507                    | 1      | 8,605,018  |        | 0.006 |
| NM       | 1,880,727       |            | 1,901,805                    |        | 2,016,550  |        | 0.013 |
| NY       | 18,287,620      |            |                              |        | 18,792,424 |        | 0.004 |
| NC       | 8,742,752       |            | 8,920,881                    |        | 9,278,237  |        | 0.006 |
| ND       | 631,376         |            |                              | 10,585 | 647,535    |        | 0.018 |
| OH       | 10,944,933      | ,          |                              | 1      | 11,230,238 |        | 0.005 |
| <u> </u> | , ,             | munity Sur | yoy 1 year Data and 2010 Con | 55,571 | 11,230,230 | 0.713  | 0.003 |

**Table 10 Continued**: State Household Population Coverage

|       | ACS Pre-        |         | ACS estimate           |        |            |        |       |
|-------|-----------------|---------|------------------------|--------|------------|--------|-------|
|       | controlled      |         | after Accounting for   |        | Census     | Cover- |       |
| State | Estimate of the | MOE     | Housing Unit Error but | MOE    | Household  | age    | MOE   |
|       | Household       | MOL     | not Within-household   |        | Population | Ratio  |       |
|       | Population      |         | Coverage Error         |        |            |        |       |
| OK    | 3,443,630       | 28,384  | 3,501,580              | 27,450 | 3,639,334  | 0.946  | 0.008 |
| OR    | 3,649,261       | 36,247  | 3,666,321              | 35,226 | 3,744,432  | 0.975  | 0.010 |
| PA    | 11,742,201      | 59,388  | 11,808,814             | 50,175 | 12,276,266 | 0.956  | 0.005 |
| RI    | 971,536         | 19,694  | 965,738                | 18,254 | 1,009,904  | 0.962  | 0.020 |
| SC    | 4,202,473       | 44,572  | 4,268,821              | 38,030 | 4,486,210  | 0.937  | 0.010 |
| SD    | 754,743         | 14,722  | 765,076                | 13,799 | 780,130    | 0.967  | 0.019 |
| TN    | 5,884,564       | 47,256  | 5,927,038              | 43,330 | 6,192,633  | 0.950  | 0.008 |
| TX    | 23,296,386      | 102,166 | 23,494,544             | 89,000 | 24,564,422 | 0.948  | 0.004 |
| UT    | 2,714,050       | 32,794  | 2,688,150              | 28,041 | 2,717,733  | 0.999  | 0.012 |
| VT    | 577,207         | 12,811  | 586,732                | 12,095 | 600,412    | 0.961  | 0.021 |
| VA    | 7,388,455       | 58,749  | 7,483,035              | 53,229 | 7,761,190  | 0.952  | 0.008 |
| WA    | 6,434,684       | 50,673  | 6,418,730              | 45,403 | 6,585,165  | 0.977  | 0.008 |
| WV    | 1,741,866       | 25,847  | 1,718,176              | 21,048 | 1,803,612  | 0.966  | 0.014 |
| WI    | 5,396,589       | 41,139  | 5,422,634              | 35,872 | 5,536,772  | 0.975  | 0.007 |
| WY    | 518,378         | 13,021  | 537,542                | 12,656 | 549,914    | 0.943  | 0.024 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

## **7.3** Coverage of the Total Resident Population

In this section we describe the coverage of the total resident population (the combined household and GQ populations) by major demographic groups and by region and state. First, Table 11 shows the overall ACS person coverage. There was a net undercoverage of all persons (0.948) living in the United States. The ACS coverage ratio was higher than the CPS coverage ratio, which has ranged from about 0.87 to 0.88 from 2008 to 2011 (U.S. Census Bureau, 2012c).

**Table 11**: National Total Resident Population Coverage for 2010 ACS 1-year Estimates

| 2010 Census Count | Coverage Ratio | MOE   |
|-------------------|----------------|-------|
| 308,745,538       | 0.948          | 0.002 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 12 we see females (0.954) had a higher overall coverage than males (0.942), though both were undercovered at the national level. This was consistent with other demographic surveys such as the 2010 Census and the CPS. In contrast, the difference in the coverage ratios between the two sexes in the CPS is typically greater, at two to three percentage points difference.

**Table 12**: National Coverage by Sex

|        | 2010 Census Count | Coverage Ratio | MOE   |
|--------|-------------------|----------------|-------|
| Female | 156,964,212       | 0.954          | 0.002 |
| Male   | 151,781,326       | 0.942          | 0.002 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

Table 13 shows the coverage ratios by age group. At the national level, all age groups were undercovered, however, coverage varied by the age group. The 18-19  $(0.898)^4$  and 20-24 (0.891) had the lowest coverage. Coverage ratios for the oldest age groups, 65-74  $(0.983)^5$  and 75+(0.981), were higher than other age groups. Higher coverage ratios for the older age groups were consistent with the coverage results of the 2010 Census (Mule, 2012); in contrast to the ACS, the 2010 Census had greater undercoverage for the 30-34, 35-44, and 45-49 age groups than for the 18-29 age groups.

**Table 13**: National Coverage by Age

| Age Group | 2010 Census Count | Coverage Ratio | MOE   |
|-----------|-------------------|----------------|-------|
| 0-4       | 20,201,362        | 0.948          | 0.004 |
| 5-14      | 41,025,851        | 0.960          | 0.003 |
| 15-17     | 12,954,254        | 0.950          | 0.005 |
| 18-19     | 9,086,089         | 0.898          | 0.006 |
| 20-24     | 21,585,999        | 0.891          | 0.004 |
| 25-29     | 21,101,849        | 0.918          | 0.004 |
| 30-34     | 19,962,099        | 0.944          | 0.004 |
| 35-44     | 41,070,606        | 0.942          | 0.003 |
| 45-49     | 22,708,591        | 0.943          | 0.004 |
| 50-54     | 22,298,125        | 0.954          | 0.004 |
| 55-64     | 36,482,729        | 0.968          | 0.004 |
| 65-74     | 21,713,429        | 0.983          | 0.006 |
| 75+       | 18,554,555        | 0.981          | 0.006 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 14 we examined to what extent low coverage ratios in the 18-19 and 20-24 age groups were being driven by residents of college/university student housing and military GQs. We know there were high concentrations of people 18-19 and 20-24 in these GQ facilities, and further, we know they have lower coverage ratios in the ACS. Residents in college/university student housing were counted across all twelve months, though they are typically not residents in the summer, while the 2010 Census counted them in April<sup>6</sup>. Also, the 2010 Census counted deployed military personnel while the ACS does not. (We discuss the coverage of these GQ facilities again in Section 7.5). When we excluded persons in these two major GQ types, the

-

<sup>&</sup>lt;sup>4</sup> The difference in coverage between the 18-19 and 20-24 age groups is not statistically significant.

<sup>&</sup>lt;sup>5</sup> The difference in coverage between the 65-74 and 75+ age groups is not statistically significant.

<sup>&</sup>lt;sup>6</sup> Starting with the 2013 ACS, the ACS will not conduct interviews in the summer months at college/university student housing.

coverage ratios for the 18-19 (0.929) and 20-24 (0.914) age groups were still lower than the overall national coverage ratio.

Table 14: National Coverage for Select Age Excluding College Dorms and Military Facilities

| Age Group | 2010 Census Count | Coverage Ratio | MOE   |
|-----------|-------------------|----------------|-------|
| 18-19     | 7,691,696         | 0.929          | 0.006 |
| 20-24     | 20,291,515        | 0.914          | 0.004 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

Table 15 shows the coverage ratios by age group crossed with sex. There were no large differences in coverage ratios between the sexes for many age groups. However, for age groups 25-29, 30-34, 35-44, 45-49, and 50-54, the coverage ratios for males were significantly less than for females. Thus the higher overall coverage ratio for females is attributable to the differences in these age groups.

Table 15: Sex by Age at the National Level

|        | Age Group | 2010 Census Count | Coverage Ratio | MOE   |
|--------|-----------|-------------------|----------------|-------|
| Female | 0-4       | 9,881,935         | 0.947          | 0.005 |
|        | 5-14      | 20,056,351        | 0.960          | 0.003 |
|        | 15-17     | 6,298,045         | 0.948          | 0.007 |
|        | 18-19     | 4,438,632         | 0.891          | 0.009 |
|        | 20-24     | 10,571,823        | 0.898          | 0.006 |
|        | 25-29     | 10,466,258        | 0.937          | 0.005 |
|        | 30-34     | 9,965,599         | 0.957          | 0.005 |
|        | 35-44     | 20,634,607        | 0.953          | 0.003 |
|        | 45-49     | 11,499,506        | 0.951          | 0.004 |
|        | 50-54     | 11,364,851        | 0.964          | 0.005 |
|        | 55-64     | 18,881,581        | 0.975          | 0.005 |
|        | 65-74     | 11,616,910        | 0.985          | 0.006 |
|        | 75+       | 11,288,114        | 0.976          | 0.006 |
| Male   | 0-4       | 10,319,427        | 0.950          | 0.006 |
|        | 5-14      | 20,969,500        | 0.961          | 0.004 |
|        | 15-17     | 6,656,209         | 0.952          | 0.006 |
|        | 18-19     | 4,647,457         | 0.905          | 0.008 |
|        | 20-24     | 11,014,176        | 0.884          | 0.005 |
|        | 25-29     | 10,635,591        | 0.900          | 0.006 |
|        | 30-34     | 9,996,500         | 0.931          | 0.005 |
|        | 35-44     | 20,435,999        | 0.931          | 0.003 |
|        | 45-49     | 11,209,085        | 0.934          | 0.005 |
|        | 50-54     | 10,933,274        | 0.944          | 0.005 |
|        | 55-64     | 17,601,148        | 0.960          | 0.005 |
|        | 65-74     | 10,096,519        | 0.980          | 0.007 |
|        | 75+       | 7,266,441         | 0.988          | 0.008 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 16 we see that though Hispanics (0.931) and non-Hispanics (0.951) were both undercovered at the national level, coverage of Hispanics was lower. Again, this is a pattern seen in other demographic surveys such as the CPS.

**Table 16**: National Coverage by Ethnicity

| Ethnicity    | 2010 Census Count | Coverage Ratio | MOE   |
|--------------|-------------------|----------------|-------|
| Hispanic     | 50,477,594        | 0.931          | 0.004 |
| Non-Hispanic | 258,267,944       | 0.951          | 0.002 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

The five race groups in Table 17a include both Hispanic and non-Hispanic persons. White alone or in combination (0.977) had the highest coverage ratio, with the exception of AIAN alone or in combination (0.971), whose coverage was not significantly different.

**Table 17a**: National Coverage by Race Alone or in Combination

| Race                          | 2010 Census Count | Coverage Ratio | MOE   |
|-------------------------------|-------------------|----------------|-------|
| White alone or in combination | 231,040,398       | 0.977          | 0.002 |
| Black alone or in combination | 42,020,743        | 0.907          | 0.004 |
| AIAN alone or in combination  | 5,220,579         | 0.971          | 0.008 |
| Asian alone or in combination | 17,320,856        | 0.939          | 0.006 |
| NHPI alone or in combination  | 1,225,195         | 0.884          | 0.026 |

Table 17b shows coverage by race alone. White alone (0.979) had the highest coverage rate, followed by Asian alone (0.950). Also, note that the coverage of AIAN alone (0.810) was substantially lower than that of AIAN alone or in combination (0.971). We believe this difference is at least in part attributable to race reporting differences between the ACS and the 2010 Census (we discuss this matter more in the section on AIAN person coverage). We did not include some other race (SOR) alone or in combination in Table 17a because many of those persons would be included in the other five race-alone groups. SOR alone (0.723) had the lowest coverage ratio, and while many indicating SOR alone were Hispanic, this was also potentially due to race reporting issues.

**Table 17b**: National Coverage by Race Alone

| 10010 1700 1 (distribution of Files of Files of Files of Files |                   |                |       |  |
|----------------------------------------------------------------|-------------------|----------------|-------|--|
| Race                                                           | 2010 Census Count | Coverage Ratio | MOE   |  |
| White alone                                                    | 223,553,265       | 0.979          | 0.002 |  |
| Black alone                                                    | 38,929,319        | 0.904          | 0.004 |  |
| AIAN alone                                                     | 2,932,248         | 0.810          | 0.012 |  |
| Asian alone                                                    | 14,674,252        | 0.950          | 0.007 |  |
| NHPI alone                                                     | 540,013           | 0.884          | 0.043 |  |
| Some other race alone                                          | 19,107,368        | 0.723          | 0.007 |  |

Table 18 shows coverage by race alone or in combination crossed with ethnicity. The ACS showed lower coverage ratios for Blacks and Hispanics, which was consistent with the decennial census and other surveys; see CPS (U.S. Census Bureau, 2012d) and 2010 Census Coverage Measurement (Mule, 2012). Coverage of Hispanics by race group was generally lower than coverage of the corresponding non-Hispanic race group combination, which is consistent with lower overall coverage of Hispanics. A notable exception was Hispanic white (1.089), which was higher than non-Hispanic white (0.961). This was likely an artifact of differences of how Hispanics identified themselves by race in the ACS and in 2010 Census.

**Table 18**: National Coverage by Ethnicity and Race Alone or in Combination

|              | Race Alone or in | 2010 Census |                |       |
|--------------|------------------|-------------|----------------|-------|
| Ethnicity    | Combination      | Count       | Coverage Ratio | MOE   |
| Hispanic     | White            | 29,184,290  | 1.089          | 0.007 |
|              | Black            | 1,897,218   | 0.826          | 0.020 |
|              | AIAN             | 1,190,904   | 0.766          | 0.024 |
|              | Asian            | 598,146     | 0.749          | 0.027 |
|              | NHPI             | 210,307     | 0.593          | 0.041 |
|              | Some Other Race  | 20,714,218  | 0.699          | 0.007 |
| Non-Hispanic | White            | 201,856,108 | 0.961          | 0.003 |
|              | Black            | 40,123,525  | 0.911          | 0.004 |
|              | AIAN             | 4,029,675   | 0.978          | 0.011 |
|              | Asian            | 16,722,710  | 0.946          | 0.006 |
|              | NHPI             | 1,014,888   | 0.944          | 0.030 |
|              | Some Other Race  | 1,033,866   | 0.829          | 0.025 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 19 we examined the coverage of the Hispanic population broken down by six Hispanic origin groups. With the exception of Central American/Dominican Republic, the coverage ratios of Hispanic origin groups were below 1.0. The lowest coverage ratio, 0.515, for the other Hispanic category, was unusually low. This was likely an artifact of reporting differences between the ACS and 2010 Census, with more respondents in the 2010 Census reporting other Hispanic, and more reporting a specific Hispanic origin group in the ACS.

**Table 19**: National Coverage by Hispanic Origin Group

| Hispanic Origin Group               | 2010 Census Count | Coverage Ratio | MOE   |
|-------------------------------------|-------------------|----------------|-------|
| Mexican                             | 31,796,431        | 0.965          | 0.006 |
| Puerto Rican                        | 4,623,470         | 0.938          | 0.013 |
| Cuban                               | 1,785,366         | 0.934          | 0.021 |
| Central American/Dominican Republic | 5,414,123         | 1.004          | 0.016 |
| Latin/South American                | 3,021,314         | 0.953          | 0.019 |
| Other Hispanic                      | 3,836,890         | 0.515          | 0.009 |

In Table 20 we see coverage of the seven largest Asian subgroups. Asian Indian  $(0.932)^7$ , Filipino (0.915), and Japanese (0.966) were all undercovered. For the other four groups the coverage ratio was not statistically different from 1.0.

**Table 20**: National Coverage of Largest Asian Groups

| Asian Group        | 2010 Census Count | Coverage Ratio | MOE   |
|--------------------|-------------------|----------------|-------|
| Chinese, no Taiwan | 3,139,236         | 0.992          | 0.015 |
| Asian Indian       | 2,846,914         | 0.932          | 0.015 |
| Filipino           | 2,556,174         | 0.915          | 0.013 |
| Vietnamese         | 1,548,614         | 0.989          | 0.024 |
| Korean             | 1,423,901         | 0.979          | 0.024 |
| Japanese           | 763,485           | 0.966          | 0.025 |
| Pakistani          | 363,720           | 0.949          | 0.060 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

The National Research Council (2004) noted patterns of coverage by states in the 1990 and 2000 Censuses, with southern states tending towards lower coverage and midwestern and northeastern states tending towards higher coverage. The 2010 Census coverage results maintain this general pattern (Mule, 2012). These general patterns also bear out in the 2010 ACS 1-year estimates, as seen in Table 21, which shows the coverage ratios for census regions (see U.S. Census Bureau, 2012e, for the definitions of the regions). The South (0.947) and the West (0.947) have lower coverage ratios than the Northeast (0.963<sup>8</sup>) and Midwest (0.964).

 Table 21: ACS Coverage of the Total Resident Population by Census Region

| Region    | Coverage Ratio | MOE   |
|-----------|----------------|-------|
| Northeast | 0.963          | 0.003 |
| Midwest   | 0.964          | 0.003 |
| South     | 0.932          | 0.002 |
| West      | 0.947          | 0.002 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

Table 22 shows the coverage rates for the total population by state and broken down by sex by state. The coverage ratios of states generally followed the same pattern as the nation in coverage of the total population. All states were undercovered except for Utah (0.992), whose coverage ratio was not significantly different from 1.0. The lowest coverage ratio was in Washington DC (0.860), which may be partly explained by high concentrations of Blacks and Hispanics.

The southern states, AL, FL, GA, LA, NC, SC had coverage ratios in the range of 0.893 to 0.938, and all of the midwestern states (as defined by the Census: IL, IN, IA, KS, MI, MN, MS, NE, ND, OH, SD, WI) had coverage ratios equal to or greater than the national coverage ratio.

<sup>&</sup>lt;sup>7</sup> The coverage ratio for Asian Indian is not statistically significantly different from that of Filipino or Japanese.

<sup>&</sup>lt;sup>8</sup> The coverage ratio for the Northeast is not statistically significantly different from that of the Midwest.

 Table 22: Coverage Rates of States by Sex

|       | Male           |       | Female         |       | Total          |       |
|-------|----------------|-------|----------------|-------|----------------|-------|
| State | Coverage Ratio | MOE   | Coverage Ratio | MOE   | Coverage Ratio | MOE   |
| AL    | 0.899          | 0.011 | 0.921          | 0.012 | 0.910          | 0.010 |
| AK    | 0.933          | 0.028 | 0.972          | 0.030 | 0.952          | 0.024 |
| AZ    | 0.913          | 0.010 | 0.920          | 0.010 | 0.917          | 0.008 |
| AR    | 0.927          | 0.013 | 0.963          | 0.015 | 0.945          | 0.013 |
| CA    | 0.935          | 0.004 | 0.951          | 0.003 | 0.943          | 0.003 |
| CO    | 0.965          | 0.011 | 0.970          | 0.011 | 0.967          | 0.009 |
| СТ    | 0.948          | 0.012 | 0.961          | 0.012 | 0.955          | 0.010 |
| DE    | 0.929          | 0.027 | 0.966          | 0.025 | 0.948          | 0.023 |
| DC    | 0.841          | 0.028 | 0.876          | 0.025 | 0.860          | 0.019 |
| FL    | 0.884          | 0.006 | 0.902          | 0.005 | 0.893          | 0.004 |
| GA    | 0.925          | 0.009 | 0.924          | 0.008 | 0.924          | 0.007 |
| HI    | 0.897          | 0.020 | 0.919          | 0.021 | 0.908          | 0.018 |
| ID    | 0.950          | 0.019 | 0.979          | 0.019 | 0.964          | 0.017 |
| IL    | 0.951          | 0.006 | 0.966          | 0.006 | 0.958          | 0.005 |
| IN    | 0.956          | 0.009 | 0.966          | 0.010 | 0.961          | 0.007 |
| IA    | 0.968          | 0.011 | 0.982          | 0.012 | 0.975          | 0.009 |
| KS    | 0.944          | 0.012 | 0.961          | 0.014 | 0.953          | 0.010 |
| KY    | 0.961          | 0.013 | 0.961          | 0.012 | 0.961          | 0.010 |
| LA    | 0.918          | 0.012 | 0.948          | 0.011 | 0.933          | 0.010 |
| ME    | 0.976          | 0.017 | 0.992          | 0.015 | 0.984          | 0.013 |
| MD    | 0.949          | 0.010 | 0.947          | 0.009 | 0.948          | 0.008 |
| MA    | 0.954          | 0.007 | 0.972          | 0.009 | 0.963          | 0.007 |
| MI    | 0.952          | 0.007 | 0.967          | 0.006 | 0.959          | 0.006 |
| MN    | 0.970          | 0.009 | 0.972          | 0.010 | 0.971          | 0.008 |
| MS    | 0.947          | 0.016 | 0.957          | 0.016 | 0.952          | 0.013 |
| MO    | 0.945          | 0.010 | 0.968          | 0.009 | 0.956          | 0.007 |
| MT    | 0.933          | 0.019 | 0.946          | 0.021 | 0.939          | 0.016 |
| NE    | 0.970          | 0.018 | 0.971          | 0.017 | 0.970          | 0.015 |
| NV    | 0.924          | 0.014 | 0.923          | 0.016 | 0.923          | 0.012 |
| NH    | 0.968          | 0.019 | 0.996          | 0.018 | 0.982          | 0.016 |
| NJ    | 0.963          | 0.008 | 0.965          | 0.008 | 0.964          | 0.007 |
| NM    | 0.911          | 0.018 | 0.937          | 0.015 | 0.924          | 0.013 |
| NY    | 0.960          | 0.006 | 0.975          | 0.005 | 0.968          | 0.004 |
| NC    | 0.932          | 0.008 | 0.943          | 0.008 | 0.938          | 0.006 |
| ND    | 0.968          | 0.021 | 0.968          | 0.023 | 0.968          | 0.018 |
| ОН    | 0.964          | 0.007 | 0.978          | 0.007 | 0.971          | 0.005 |
| OK    | 0.932          | 0.010 | 0.952          | 0.010 | 0.942          | 0.008 |
| OR    | 0.958          | 0.012 | 0.977          | 0.011 | 0.968          | 0.010 |

Table 22 Continued: Coverage Rates of States by Sex

|       | Male           |       | Female         |       | Total          |       |
|-------|----------------|-------|----------------|-------|----------------|-------|
| State | Coverage Ratio | MOE   | Coverage Ratio | State | Coverage Ratio | MOE   |
| PA    | 0.948          | 0.006 | 0.958          | 0.006 | 0.953          | 0.005 |
| RI    | 0.949          | 0.020 | 0.952          | 0.024 | 0.950          | 0.019 |
| SC    | 0.926          | 0.012 | 0.938          | 0.010 | 0.932          | 0.010 |
| SD    | 0.959          | 0.024 | 0.964          | 0.022 | 0.962          | 0.020 |
| TN    | 0.942          | 0.009 | 0.952          | 0.009 | 0.947          | 0.007 |
| TX    | 0.939          | 0.004 | 0.949          | 0.005 | 0.944          | 0.004 |
| UT    | 0.983          | 0.015 | 1.002          | 0.013 | 0.992          | 0.012 |
| VT    | 0.946          | 0.025 | 0.953          | 0.023 | 0.950          | 0.021 |
| VA    | 0.942          | 0.010 | 0.951          | 0.009 | 0.946          | 0.008 |
| WA    | 0.971          | 0.010 | 0.973          | 0.008 | 0.972          | 0.008 |
| WV    | 0.947          | 0.016 | 0.973          | 0.017 | 0.960          | 0.014 |
| WI    | 0.967          | 0.010 | 0.975          | 0.009 | 0.971          | 0.008 |
| WY    | 0.935          | 0.029 | 0.955          | 0.032 | 0.945          | 0.024 |

The pattern of coverage by sex for the states was generally similar to that of the nation. We saw higher coverage ratios for females for 20 state equivalents, whereas for no state did males have higher coverage ratios (Georgia and Nevada had observed coverage rates for males which were higher than that of females, but these differences were not statistically significant). There was no significant difference in the coverage ratios of the sexes in remaining 31 states.

Table 23 shows the coverage of total population for each state broken down by age group. Generally, the coverage ratios of the age groups followed a pattern similar to that of the nation. For example, of the 51 state equivalents, 45 had coverage ratios for the 65-74 age group higher than that of the 20-24 age group. The other six state equivalents had no significant difference in coverage between the 20-24 and 65-74 age groups.

Table 23: Person Coverage of States by Age Group (MOEs are below the estimates)

|       |          |       |       | 0 01 200 |       | 1 1 0 0 1 | 9 th (11. | 1025  | ic ociov |       |       |       |       |
|-------|----------|-------|-------|----------|-------|-----------|-----------|-------|----------|-------|-------|-------|-------|
| State | 0-4      | 5-14  |       | 18-19    | 20-24 | 25-29     | 30-34     | 35-44 | 45-49    | 50-54 | 55-64 | 65-74 | 75+   |
| AL    | 0.904    | 0.910 | 0.948 | 0.852    | 0.837 | 0.879     | 0.883     | 0.914 | 0.912    | 0.906 | 0.934 | 0.932 | 0.987 |
| AL    | 0.037    | 0.027 | 0.037 | 0.047    | 0.028 | 0.039     | 0.031     | 0.022 | 0.026    | 0.026 | 0.021 | 0.023 | 0.027 |
| AK    | 0.993    | 1.000 | 1.027 | 0.843    | 0.956 | 0.845     | 0.934     | 0.909 | 0.926    | 1.019 | 0.957 | 0.924 | 1.012 |
| AK    | 0.089    | 0.067 | 0.099 | 0.124    | 0.124 | 0.067     | 0.079     | 0.060 | 0.068    | 0.075 | 0.057 | 0.086 | 0.124 |
| AZ    | 0.894    | 0.903 | 0.913 | 0.838    | 0.867 | 0.879     | 0.899     | 0.921 | 0.933    | 0.945 | 0.940 | 0.981 | 0.956 |
| AZ    | 0.028    | 0.024 | 0.036 | 0.044    | 0.031 | 0.028     | 0.028     | 0.020 | 0.037    | 0.027 | 0.020 | 0.023 | 0.031 |
| AR    | 0.939    | 0.958 | 0.993 | 0.920    | 0.888 | 0.914     | 0.928     | 0.953 | 0.921    | 0.960 | 0.966 | 0.936 | 0.988 |
| AK    | 0.052    | 0.034 | 0.049 | 0.063    | 0.057 | 0.041     | 0.045     | 0.027 | 0.036    | 0.034 | 0.031 | 0.036 | 0.049 |
| CA    | 0.950    | 0.957 | 0.949 | 0.904    | 0.900 | 0.913     | 0.951     | 0.939 | 0.927    | 0.949 | 0.953 | 0.972 | 0.971 |
| CA    | 0.012    | 0.010 | 0.013 | 0.019    | 0.013 | 0.012     | 0.013     | 0.008 | 0.010    | 0.011 | 0.008 | 0.010 | 0.012 |
| СО    | 0.972    | 0.984 | 0.951 | 0.911    | 0.920 | 0.967     | 0.998     | 0.957 | 0.954    | 0.967 | 0.973 | 0.976 | 1.002 |
| CO    | 0.035    | 0.025 | 0.034 | 0.041    | 0.036 | 0.036     | 0.031     | 0.022 | 0.028    | 0.030 | 0.024 | 0.026 | 0.034 |
| СТ    | 0.966    | 0.963 | 0.931 | 0.870    | 0.923 | 0.921     | 0.911     | 0.945 | 0.955    | 0.956 | 0.965 | 1.015 | 1.007 |
| CT    | 0.048    | 0.028 | 0.047 | 0.051    | 0.036 | 0.039     | 0.038     | 0.022 | 0.034    | 0.029 | 0.025 | 0.029 | 0.031 |
| DE    | 0.962    | 0.981 | 1.019 | 0.828    | 0.845 | 0.950     | 0.927     | 0.914 | 0.874    | 0.954 | 0.999 | 0.972 | 1.037 |
| DE    | 0.090    | 0.074 | 0.103 | 0.096    | 0.082 | 0.091     | 0.080     | 0.049 | 0.051    | 0.067 | 0.052 | 0.065 | 0.065 |
| DC    | 0.901    | 0.805 | 0.877 | 0.675    | 0.709 | 0.812     | 0.940     | 0.871 | 0.877    | 0.898 | 0.892 | 1.001 | 0.975 |
| DC    | 0.089    | 0.082 | 0.148 | 0.090    | 0.063 | 0.062     | 0.066     | 0.054 | 0.076    | 0.069 | 0.063 | 0.082 | 0.088 |
| E     | 0.878    | 0.908 | 0.898 | 0.825    | 0.824 | 0.863     | 0.891     | 0.887 | 0.906    | 0.909 | 0.917 | 0.923 | 0.903 |
| FL    | 0.017    | 0.014 | 0.021 | 0.026    | 0.016 | 0.015     | 0.017     | 0.013 | 0.014    | 0.014 | 0.011 | 0.014 | 0.012 |
| CA    | 0.907    | 0.911 | 0.924 | 0.808    | 0.877 | 0.912     | 0.945     | 0.929 | 0.924    | 0.942 | 0.965 | 0.948 | 0.958 |
| GA    | 0.023    | 0.018 | 0.024 | 0.033    | 0.023 | 0.025     | 0.025     | 0.014 | 0.021    | 0.023 | 0.020 | 0.025 | 0.021 |
| 7.77  | 0.837    | 0.931 | 0.986 | 0.835    | 0.781 | 0.865     | 0.879     | 0.886 | 0.987    | 0.948 | 0.959 | 0.942 | 0.906 |
| HI    | 0.059    | 0.049 | 0.076 | 0.101    | 0.067 | 0.062     | 0.060     | 0.041 | 0.047    | 0.050 | 0.036 | 0.063 | 0.047 |
| ID    | 0.966    | 0.977 | 1.014 | 0.827    | 0.861 | 0.911     | 0.881     | 1.023 | 0.943    | 0.943 | 1.009 | 0.996 | 1.043 |
| ID    | 0.056    | 0.045 | 0.059 | 0.075    | 0.057 | 0.065     | 0.056     | 0.040 |          | 0.051 | 0.039 | 0.050 | 0.057 |
|       | 0.970    | 0.969 | 0.967 | 0.923    | 0.911 | 0.942     | 0.937     | 0.963 | 0.953    | 0.956 | 0.974 | 0.978 | 0.979 |
| IL    | 0.021    | 0.016 | 0.022 | 0.032    | 0.019 | 0.020     | 0.021     | 0.013 | 0.015    | 0.016 | 0.014 | 0.017 | 0.019 |
| TNI   | 0.946    | 0.974 | 0.943 | 0.948    | 0.928 | 0.922     | 0.950     | 0.941 | 0.939    | 0.975 | 0.991 | 1.005 | 0.996 |
| IN    | 0.027    | 0.023 | 0.032 | 0.038    | 0.029 | 0.026     | 0.026     | 0.019 | 0.022    | 0.024 | 0.021 | 0.027 | 0.029 |
| т. А  | 0.990    | 1.012 | 0.978 | 0.938    | 0.875 | 0.926     | 1.016     | 0.988 | 0.954    | 0.955 | 0.988 | 0.997 | 0.992 |
| IA    | 0.028    | 0.027 | 0.045 | 0.052    | 0.037 | 0.036     | 0.035     | 0.025 | 0.029    | 0.034 | 0.029 | 0.032 | 0.029 |
| IZC   | 0.929    | 0.936 | 0.918 | 0.907    | 0.921 | 0.936     | 0.947     | 0.931 | 0.956    | 0.957 | 0.972 | 1.046 | 1.021 |
| KS    | 0.035    | 0.031 | 0.064 | 0.055    | 0.046 | 0.039     | 0.045     | 0.030 | 0.036    | 0.035 | 0.028 | 0.038 | 0.034 |
| LV.   | 0.944    | 0.978 | 0.940 | 0.955    | 0.944 | 0.915     | 0.960     | 0.925 | 0.947    | 0.950 | 1.017 | 0.998 | 0.982 |
| KY    | 0.036    | 0.029 | 0.040 | 0.057    | 0.044 | 0.037     | 0.032     | 0.024 | 0.032    | 0.028 | 0.024 | 0.033 | 0.028 |
| T A   | 0.951    | 0.965 | 0.900 | 0.864    | 0.869 | 0.885     | 0.941     | 0.934 | 0.929    | 0.914 | 0.961 | 0.969 | 0.968 |
| LA    | 0.031    | 0.027 | 0.050 | 0.048    | 0.035 | 0.034     | 0.035     | 0.024 | 0.027    | 0.029 | 0.020 | 0.025 | 0.033 |
| ME    | 0.937    | 1.011 | 0.987 | 0.904    | 0.876 | 0.991     | 0.917     | 0.993 | 0.988    | 1.005 | 1.025 | 1.011 | 0.979 |
| ME    | 0.067    | 0.044 | 0.073 | 0.079    | 0.060 | 0.064     | 0.060     | 0.038 | 0.040    | 0.047 | 0.039 | 0.045 | 0.046 |
| MD    | 0.947    | 0.963 | 0.947 | 0.899    | 0.863 | 0.950     | 0.916     | 0.938 | 0.947    | 0.957 | 0.964 | 0.995 | 1.007 |
| MD    | 0.039    | 0.023 | 0.038 | 0.040    | 0.029 | 0.030     | 0.033     | 0.019 | 0.025    | 0.024 | 0.020 | 0.028 | 0.030 |
| MA    | 1.000    | 0.973 | 0.974 | 0.890    | 0.888 | 0.908     | 0.975     | 0.950 | 0.962    | 0.948 | 0.982 | 1.036 | 1.002 |
| MA    | 0.032    | 0.021 | 0.033 | 0.053    | 0.030 | 0.026     | 0.024     | 0.018 | 0.020    | 0.023 | 0.018 | 0.023 | 0.025 |
|       | 0.972    | 0.969 |       | 0.894    | 0.883 | 0.938     | 0.947     | 0.951 | 0.971    | 0.972 | 0.974 | 0.990 | 0.993 |
| MI    | 0.027    | 0.016 | 0.022 | 0.025    | 0.022 | 0.023     | 0.023     | 0.015 | 0.017    | 0.016 | 0.014 | 0.017 | 0.020 |
| NO.   | 0.974    | 0.970 |       | 0.966    | 0.903 | 0.957     | 0.962     | 0.953 | 0.957    | 0.990 | 1.015 | 1.005 | 0.987 |
| MN    | 0.029    | 0.026 |       | 0.043    | 0.032 | 0.030     | 0.025     | 0.019 |          | 0.023 | 0.017 | 0.024 | 0.024 |
| 1.00  | 0.957    | 0.950 | 0.955 | 0.932    | 0.950 | 0.903     | 0.924     | 0.928 |          | 0.962 | 0.960 | 1.032 | 0.968 |
| MS    | 0.052    | 0.037 |       | 0.062    | 0.051 | 0.042     | 0.040     | 0.027 |          | 0.041 | 0.030 | 0.039 | 0.043 |
|       | <b>_</b> | 2.027 | 2.0.7 |          |       |           | 2.0.0     |       |          | J.O.1 | 2.020 | 2.007 | 2.0.0 |

Table 23 Continued: Person Coverage of States by Age Group (MOEs are below the estimates)

| Labic  |       | nunucu | . I CIBC | JII 0010 | ruge or | Dunes     | <i>vj</i> 115 | Orou  | P (11101 | 35 <b>are</b> 6 | . • 10 11 111 |       | ,,,   |
|--------|-------|--------|----------|----------|---------|-----------|---------------|-------|----------|-----------------|---------------|-------|-------|
| State  | 0-4   | 5-14   | 15-17    | 18-19    | 20-24   | 25-29     | 30-34         | 35-44 | 45-49    | 50-54           | 55-64         | 65-74 | 75+   |
| 1.60   | 0.966 | 0.952  | 0.929    | 0.896    | 0.904   | 0.957     | 0.968         | 0.941 | 0.951    | 0.967           | 0.968         | 1.006 | 0.989 |
| MO     | 0.031 | 0.025  | 0.030    | 0.046    | 0.029   | 0.028     | 0.032         | 0.020 |          | 0.024           | 0.019         | 0.024 | 0.024 |
| 3.65   | 0.973 | 0.899  | 0.905    | 0.866    | 0.885   | 0.889     | 0.929         | 0.931 | 0.898    | 0.985           | 0.978         | 1.007 | 0.982 |
| MT     | 0.063 | 0.050  | 0.078    | 0.090    | 0.079   | 0.069     | 0.073         | 0.052 | 0.057    | 0.059           | 0.043         | 0.052 | 0.060 |
|        | 0.933 | 0.976  | 0.943    | 1.004    | 0.933   | 0.937     | 0.988         | 0.975 |          | 0.958           | 1.011         | 1.002 | 1.004 |
| NE     | 0.056 | 0.037  | 0.056    | 0.067    | 0.044   | 0.049     | 0.048         | 0.032 | 0.045    | 0.041           | 0.033         | 0.044 | 0.059 |
|        | 0.943 | 0.951  | 0.951    | 0.868    | 0.859   | 0.901     | 0.964         | 0.930 |          | 0.880           | 0.919         | 0.927 | 0.936 |
| NV     | 0.043 | 0.036  | 0.056    | 0.062    | 0.046   | 0.046     | 0.044         | 0.027 | 0.036    | 0.039           | 0.029         | 0.041 | 0.040 |
|        | 0.936 |        | 0.900    | 0.991    | 0.946   | 0.912     | 0.996         | 0.978 |          | 0.982           | 1.018         | 1.075 | 1.008 |
| NH     | 0.064 | 0.053  | 0.072    | 0.123    | 0.069   | 0.064     | 0.070         | 0.038 | 0.053    | 0.047           | 0.043         | 0.052 | 0.061 |
|        | 0.973 | 0.971  | 0.949    | 0.959    | 0.922   | 0.913     | 0.955         | 0.960 | 0.959    | 0.969           | 0.969         | 0.997 | 1.013 |
| NJ     | 0.026 | 0.017  | 0.026    | 0.040    | 0.029   | 0.024     | 0.018         | 0.015 | l I      | 0.019           | 0.018         | 0.018 | 0.023 |
|        | 0.908 | 0.927  | 0.899    | 0.880    | 0.852   | 0.893     | 0.959         | 0.885 | 0.903    | 0.926           | 0.983         | 0.981 | 0.971 |
| NM     | 0.046 | 0.044  | 0.055    | 0.079    | 0.048   | 0.048     | 0.048         | 0.034 | 0.038    | 0.043           | 0.036         | 0.040 | 0.052 |
|        | 0.966 | 0.992  | 0.993    | 0.946    | 0.908   | 0.912     | 0.927         | 0.954 | 0.956    | 0.984           | 0.984         | 1.028 | 1.018 |
| NY     | 0.019 | 0.014  | 0.019    | 0.019    | 0.019   | 0.015     | 0.016         | 0.011 | 0.011    | 0.014           | 0.013         | 0.014 | 0.016 |
|        | 0.947 | 0.963  | 0.926    | 0.892    | 0.862   | 0.910     | 0.950         | 0.930 |          | 0.929           | 0.965         | 0.975 | 0.935 |
| NC     | 0.023 | 0.019  | 0.032    | 0.041    | 0.028   | 0.027     | 0.021         | 0.015 |          | 0.019           | 0.015         | 0.020 | 0.021 |
|        | 0.942 | 0.984  | 0.996    | 0.874    | 0.911   | 1.008     | 0.930         | 0.923 | -        | 1.009           | 0.989         | 1.005 | 1.007 |
| ND     | 0.083 | 0.057  | 0.085    | 0.094    | 0.073   | 0.082     | 0.076         | 0.053 | l I      | 0.063           | 0.054         | 0.061 | 0.060 |
|        | 0.996 | 0.991  | 0.983    | 0.899    | 0.905   | 0.959     | 0.983         | 0.962 | 0.949    | 0.966           | 0.984         | 0.991 | 1.000 |
| OH     | 0.021 | 0.018  | 0.024    | 0.030    | 0.020   | 0.023     | 0.022         | 0.014 | 0.017    | 0.017           | 0.014         | 0.019 | 0.019 |
|        | 0.955 | 0.953  | 0.916    | 0.890    | 0.886   | 0.918     | 0.938         | 0.933 |          | 0.953           | 0.987         | 0.942 | 0.980 |
| OK     | 0.037 | 0.026  | 0.034    | 0.050    | 0.033   | 0.031     | 0.036         | 0.022 | 0.027    | 0.029           | 0.025         | 0.026 | 0.032 |
|        | 0.942 | 1.022  | 0.992    | 0.886    | 0.905   | 0.906     | 0.964         | 0.972 | 0.962    | 0.939           | 0.991         | 1.009 | 0.977 |
| OR     | 0.038 | 0.034  | 0.043    | 0.050    | 0.036   | 0.037     | 0.033         | 0.026 |          | 0.030           | 0.024         | 0.028 | 0.032 |
|        | 0.932 | 0.968  | 0.931    | 0.884    | 0.893   | 0.923     | 0.946         | 0.946 |          | 0.982           | 0.981         | 0.981 | 0.979 |
| PA     | 0.020 |        | 0.022    | 0.023    | 0.021   | 0.018     | 0.020         | 0.013 | 0.017    | 0.015           | 0.013         | 0.016 | 0.015 |
|        | 0.943 | 1.016  | 0.980    | 0.882    | 0.879   | 0.907     | 0.965         | 0.974 |          | 0.901           | 0.925         | 0.986 | 0.944 |
| RI     | 0.084 | 0.057  | 0.099    | 0.101    | 0.070   | 0.077     | 0.074         | 0.046 |          | 0.061           | 0.048         | 0.058 | 0.053 |
|        | 0.929 | 0.923  | 0.901    | 0.875    | 0.871   | 0.921     | 0.926         | 0.934 | 0.938    | 0.939           | 0.947         | 0.977 | 0.992 |
| SC     | 0.035 | 0.028  | 0.041    | 0.049    | 0.037   | 0.035     | 0.036         | 0.020 |          | 0.029           | 0.024         | 0.028 | 0.037 |
|        | 0.856 | 0.972  | 1.008    | 1.144    | 0.906   | 0.921     | 0.910         | 0.960 | 0.979    | 1.006           | 0.934         | 1.000 | 1.035 |
| SD     | 0.067 | 0.057  | 0.071    | 0.265    | 0.074   | 0.081     | 0.067         | 0.053 |          | 0.064           | 0.049         | 0.062 | 0.063 |
|        | 0.940 | 0.953  | 0.937    | 0.892    | 0.877   | 0.941     | 0.951         | 0.950 | 0.928    | 0.967           | 0.946         | 0.999 | 0.985 |
| TN     | 0.028 | 0.022  | 0.036    | 0.041    | 0.028   | 0.030     | 0.028         | 0.021 | 0.025    | 0.025           | 0.020         | 0.029 | 0.028 |
|        | 0.942 | 0.958  | 0.960    | 0.895    | 0.902   | 0.913     | 0.930         | 0.943 |          | 0.943           | 0.959         | 0.980 | 0.982 |
| TX     | 0.014 | 0.010  | 0.017    | 0.019    | 0.016   | 0.014     | 0.013         | 0.010 |          | 0.014           | 0.010         | 0.014 | 0.015 |
|        | 1.017 |        | 1.000    | 0.918    | 0.912   | 0.972     | 1.037         | 0.995 | -        | 0.951           |               | 0.984 |       |
| UT     | 0.038 |        | 0.049    | 0.059    | 0.044   | 0.038     | 0.036         | 0.029 |          | 0.037           | 0.037         | 0.045 | 0.044 |
|        | 0.911 | 0.936  | 0.973    | 0.838    | 0.906   | 0.892     | 0.900         | 0.890 |          | 0.958           | 1.038         | 0.985 | 1.040 |
| VT     | 0.109 | 0.071  | 0.088    | 0.083    | 0.081   | 0.085     | 0.090         | 0.050 |          | 0.053           | 0.046         | 0.057 | 0.067 |
| 77.4   | 0.945 | 0.973  | 0.916    | 0.892    | 0.867   | 0.921     | 0.953         | 0.942 |          | 0.957           | 0.959         | 0.976 | 0.989 |
| VA     | 0.027 | 0.020  | 0.029    | 0.048    | 0.027   | 0.027     | 0.026         | 0.018 |          | 0.019           | 0.016         | 0.023 | 0.027 |
| ***    | 0.993 | 0.978  | 0.978    | 0.908    | 0.940   | 0.954     | 0.976         | 0.964 |          | 0.953           | 0.990         | 1.001 | 1.029 |
| WA     | 0.029 | 0.023  | 0.032    | 0.043    | 0.036   | 0.027     | 0.026         | 0.018 | l l      | 0.025           | 0.017         | 0.028 | 0.026 |
| ****   | 0.989 | 0.942  | 0.974    | 0.892    | 0.874   | 0.918     | 0.998         | 0.961 | 0.974    | 0.908           | 1.004         | 0.973 | 1.001 |
| WV     | 0.053 | 0.046  | 0.068    | 0.079    | 0.043   | 0.052     | 0.054         | 0.036 |          | 0.040           | 0.035         | 0.046 | 0.048 |
| ***    | 0.951 | 0.974  | 0.972    | 0.962    | 0.897   | 0.936     | 0.953         | 0.959 |          | 0.998           | 1.004         | 1.015 | 0.994 |
| WI     | 0.025 | 0.022  | 0.032    | 0.039    | 0.027   | 0.030     | 0.026         | 0.020 | l l      | 0.025           | 0.018         | 0.022 | 0.023 |
| 33737  | 0.976 |        | 0.992    | 1.011    | 0.798   | 0.838     | 0.964         | 0.964 |          | 0.944           | 0.995         | 0.957 | 0.984 |
| WY     | 0.102 | 0.083  | 0.115    | 0.162    | 0.102   | 0.092     | 0.095         | 0.072 |          | 0.067           | 0.067         | 0.085 | 0.101 |
| Course |       |        |          |          |         | r Doto or |               |       |          | 2.007           | 2.007         | 2.000 | 3.131 |

Table 24 shows the coverage of states by selected race alone or in combination and ethnicity combinations. (The corresponding MOEs are found in Table 24a). Non-Hispanic white alone or in combination had the highest coverage in five states, non-Hispanic AIAN alone or in combination had the highest coverage in 15 states, and non-Hispanic NHPI alone or in combination had the highest coverage in 14 states.

**Table 24**: Coverage of State by Race (Margins of Error in Table 24a)

|    | ble 24: Coverage of State by Race (Margins of Error in Table 24a)  Non-Hispanic |       |                   |       |       |               |                      |  |  |  |
|----|---------------------------------------------------------------------------------|-------|-------------------|-------|-------|---------------|----------------------|--|--|--|
|    |                                                                                 | Alone | or in Combination |       |       | Alone         | TT'                  |  |  |  |
|    |                                                                                 |       |                   |       |       | Some<br>Other | Hispanic<br>any Race |  |  |  |
|    | White                                                                           | Black | AIAN              | Asian | NHPI  | Race          |                      |  |  |  |
| AL | 0.923                                                                           | 0.886 | 0.957             | 0.837 | 0.595 | 0.442         | 0.876                |  |  |  |
| AK | 0.922                                                                           | 0.926 | 0.944             | 1.199 | 1.072 | 1.062         | 1.162                |  |  |  |
| AZ | 0.937                                                                           | 0.912 | 0.875             | 0.830 | 0.914 | 0.636         | 0.887                |  |  |  |
| AR | 0.942                                                                           | 0.983 | 0.891             | 0.743 | 1.052 | 1.687         | 0.922                |  |  |  |
| CA | 0.959                                                                           | 0.902 | 0.972             | 0.943 | 0.949 | 0.817         | 0.932                |  |  |  |
| CO | 0.963                                                                           | 0.989 | 1.056             | 1.022 | 1.105 | 0.763         | 0.981                |  |  |  |
| CT | 0.964                                                                           | 0.871 | 1.020             | 0.954 | 0.573 | 1.201         | 0.964                |  |  |  |
| DE | 0.953                                                                           | 0.942 | 0.813             | 1.019 | 1.179 | 0.721         | 0.876                |  |  |  |
| DC | 0.947                                                                           | 0.811 | 0.648             | 0.741 | 0.830 | 0.517         | 0.816                |  |  |  |
| FL | 0.903                                                                           | 0.880 | 0.833             | 0.905 | 0.847 | 0.901         | 0.876                |  |  |  |
| GA | 0.946                                                                           | 0.893 | 0.832             | 0.957 | 0.721 | 0.861         | 0.869                |  |  |  |
| HI | 0.897                                                                           | 0.905 | 1.067             | 0.929 | 0.910 | 0.853         | 0.869                |  |  |  |
| ID | 0.962                                                                           | 1.013 | 1.086             | 0.843 | 1.129 | 0.279         | 0.989                |  |  |  |
| IL | 0.977                                                                           | 0.921 | 0.978             | 0.949 | 0.963 | 0.944         | 0.917                |  |  |  |
| IN | 0.969                                                                           | 0.912 | 1.300             | 0.880 | 0.399 | 0.856         | 0.951                |  |  |  |
| IA | 0.978                                                                           | 0.937 | 1.256             | 0.924 | 1.087 | 0.837         | 0.978                |  |  |  |
| KS | 0.960                                                                           | 0.930 | 1.304             | 0.938 | 0.518 | 0.494         | 0.914                |  |  |  |
| KY | 0.961                                                                           | 0.957 | 0.993             | 0.845 | 0.906 | 0.601         | 1.037                |  |  |  |
| LA | 0.948                                                                           | 0.891 | 0.947             | 1.005 | 1.884 | 0.932         | 0.997                |  |  |  |
| ME | 0.986                                                                           | 1.084 | 1.235             | 0.805 | 3.001 | 0.227         | 0.908                |  |  |  |
| MD | 0.970                                                                           | 0.895 | 0.894             | 1.012 | 0.986 | 0.809         | 0.965                |  |  |  |
| MA | 0.972                                                                           | 0.977 | 1.038             | 0.930 | 0.865 | 0.600         | 0.937                |  |  |  |
| MI | 0.968                                                                           | 0.908 | 1.063             | 1.019 | 0.974 | 1.208         | 0.953                |  |  |  |
| MN | 0.978                                                                           | 0.965 | 0.955             | 0.888 | 1.120 | 0.875         | 0.970                |  |  |  |
| MS | 0.962                                                                           | 0.939 | 0.994             | 0.888 | 0.191 | 1.221         | 0.922                |  |  |  |
| MO | 0.962                                                                           | 0.931 | 1.101             | 0.875 | 1.009 | 0.772         | 0.978                |  |  |  |
| MT | 0.948                                                                           | 1.083 | 0.828             | 0.802 | 1.135 | 0.565         | 0.932                |  |  |  |
| NE | 0.977                                                                           | 1.020 | 1.137             | 0.963 | 1.508 | 0.623         | 0.901                |  |  |  |
| NV | 0.932                                                                           | 0.849 | 0.889             | 0.884 | 0.910 | 1.013         | 0.936                |  |  |  |
| NH | 0.976                                                                           | 1.174 | 1.209             | 1.068 | 1.481 | 1.715         | 0.957                |  |  |  |
| NJ | 0.989                                                                           | 0.903 | 0.842             | 0.949 | 1.019 | 1.027         | 0.927                |  |  |  |
| NM | 0.952                                                                           | 0.949 | 0.806             | 0.900 | 0.768 | 0.789         | 0.921                |  |  |  |
| NY | 0.983                                                                           | 0.939 | 0.868             | 0.991 | 0.671 | 1.027         | 0.933                |  |  |  |
| NC | 0.948                                                                           | 0.920 | 1.013             | 0.914 | 0.883 | 0.916         | 0.934                |  |  |  |
| ND | 0.971                                                                           | 1.099 | 0.870             | 1.032 | 1.642 | 0.656         | 1.044                |  |  |  |
| ОН | 0.974                                                                           | 0.954 | 0.984             | 0.980 | 0.967 | 0.955         | 0.998                |  |  |  |
| OK | 0.956                                                                           | 0.916 | 1.063             | 0.905 | 1.100 | 0.662         | 0.975                |  |  |  |
| OR | 0.973                                                                           | 0.939 | 0.987             | 0.919 | 0.873 | 1.309         | 0.946                |  |  |  |
| PA | 0.965                                                                           | 0.874 | 0.944             | 0.932 | 0.944 | 1.086         | 0.945                |  |  |  |
| RI | 0.963                                                                           | 1.019 | 0.845             | 0.906 | 0.540 | 0.705         | 0.896                |  |  |  |
| SC | 0.956                                                                           | 0.894 | 0.837             | 0.837 | 0.933 | 0.484         | 0.917                |  |  |  |

Table 24 Continued: Coverage of State by Race (Margins of Error in Table 24a)

|    |       |       | Non-Hisp        | anic  |       | -     |                   |
|----|-------|-------|-----------------|-------|-------|-------|-------------------|
|    |       | Alone | or in Combinati | on    |       | Alone | Hisponia          |
|    |       |       |                 |       |       | Some  | Hispanic any Race |
|    |       |       |                 |       |       | Other | any race          |
|    | White | Black | AIAN            | Asian | NHPI  | Race  |                   |
| SD | 0.969 | 0.805 | 0.922           | 0.857 | 0.526 | 0.887 | 1.012             |
| TN | 0.959 | 0.901 | 1.092           | 0.989 | 0.744 | 0.757 | 0.913             |
| TX | 0.951 | 0.900 | 1.088           | 0.967 | 0.879 | 1.046 | 0.946             |
| UT | 0.985 | 0.907 | 0.891           | 0.950 | 1.290 | 0.884 | 1.039             |
| VT | 0.944 | 1.280 | 0.748           | 1.288 | 2.823 | 1.403 | 0.975             |
| VA | 0.961 | 0.926 | 0.845           | 0.932 | 1.396 | 0.978 | 0.892             |
| WA | 0.975 | 0.964 | 1.026           | 0.975 | 0.991 | 0.612 | 0.955             |
| WV | 0.960 | 0.958 | 2.054           | 0.952 | 1.525 | 0.358 | 1.096             |
| WI | 0.979 | 0.941 | 1.049           | 0.911 | 1.065 | 0.816 | 0.939             |
| WY | 0.948 | 0.624 | 1.077           | 0.597 | 0.452 | 0.465 | 0.991             |

Table 24a: Margins of Error of Estimates of Coverage of State by Race

|          | a. Margins of Er |                | Non-Hispai      |                | <u>-</u>       |                |                |
|----------|------------------|----------------|-----------------|----------------|----------------|----------------|----------------|
|          |                  | Alone o        | r in Combinatio | n              |                | Alone          | Hispanic       |
|          | XXII '.          | DI I           | ATAN            |                | MIDI           | Some<br>Other  | any Race       |
| AT       | White            | Black          | AIAN            | Asian          | NHPI           | Race           | 0.070          |
| AL       | 0.012            | 0.021          | 0.110           | 0.100          | 0.261          | 0.198          | 0.070          |
| AK       | 0.027            | 0.163          | 0.050           | 0.176<br>0.056 | 0.359          | 0.934          | 0.163          |
| AZ<br>AR | 0.010<br>0.015   | 0.059<br>0.045 | 0.048           | 0.036          | 0.215<br>0.528 | 0.217<br>0.882 | 0.021          |
| CA       | 0.013            | 0.043          | 0.112<br>0.047  | 0.103          | 0.328          | 0.090          | 0.090          |
| CO       | 0.003            | 0.018          | 0.100           | 0.010          | 0.073          | 0.090          | 0.007          |
| CT       | 0.012            | 0.038          | 0.160           | 0.074          | 0.209          | 0.240          | 0.028          |
| DE       | 0.012            | 0.045          | 0.100           | 0.073          | 0.209          | 0.337          | 0.040          |
| DC       | 0.028            | 0.003          | 0.223           | 0.091          | 0.619          | 0.455          | 0.110          |
| FL       | 0.006            | 0.034          | 0.070           | 0.036          | 0.160          | 0.173          | 0.101          |
| GA       | 0.010            | 0.015          | 0.089           | 0.049          | 0.178          | 0.177          | 0.036          |
| HI       | 0.028            | 0.129          | 0.183           | 0.026          | 0.048          | 0.508          | 0.073          |
| ID       | 0.018            | 0.251          | 0.154           | 0.148          | 0.547          | 0.240          | 0.095          |
| IL       | 0.008            | 0.020          | 0.090           | 0.034          | 0.317          | 0.227          | 0.020          |
| IN       | 0.009            | 0.035          | 0.146           | 0.062          | 0.170          | 0.253          | 0.050          |
| IA       | 0.011            | 0.086          | 0.166           | 0.097          | 0.439          | 0.600          | 0.077          |
| KS       | 0.012            | 0.056          | 0.148           | 0.082          | 0.211          | 0.228          | 0.050          |
| KY       | 0.012            | 0.048          | 0.144           | 0.092          | 0.416          | 0.335          | 0.106          |
| LA       | 0.012            | 0.024          | 0.107           | 0.098          | 0.928          | 0.297          | 0.075          |
| ME       | 0.013            | 0.226          | 0.205           | 0.183          | 1.917          | 0.193          | 0.191          |
| MD       | 0.012            | 0.018          | 0.124           | 0.051          | 0.301          | 0.206          | 0.050          |
| MA       | 0.008            | 0.047          | 0.136           | 0.042          | 0.262          | 0.089          | 0.039          |
| MI       | 0.006            | 0.021          | 0.063           | 0.051          | 0.255          | 0.242          | 0.046          |
| MN       | 0.009            | 0.054          | 0.100           | 0.056          | 0.317          | 0.318          | 0.057          |
| MS       | 0.018            | 0.023          | 0.176           | 0.152          | 0.125          | 0.908          | 0.128          |
| MO       | 0.008            | 0.034          | 0.111           | 0.062          | 0.325          | 0.302          | 0.058          |
| MT       | 0.017            | 0.284          | 0.077           | 0.180          | 0.649          | 0.365          | 0.145          |
| NE       | 0.017            | 0.105          | 0.209           | 0.165          | 1.114          | 0.348          | 0.074          |
| NV       | 0.015            | 0.050          | 0.094           | 0.055          | 0.165          | 0.357          | 0.036          |
| NH       | 0.017            | 0.236          | 0.242           | 0.165          | 1.382          | 1.009          | 0.190          |
| NJ       | 0.008            | 0.028          | 0.110           | 0.030          | 0.331          | 0.214          | 0.025          |
| NM<br>NV | 0.023<br>0.006   | 0.133          | 0.054           | 0.124          | 0.314          | 0.364          | 0.024          |
| NY       |                  | 0.015          | 0.057           | 0.026          | 0.141          | 0.109          | 0.016<br>0.043 |
| NC<br>ND | 0.008            | 0.020          | 0.082           | 0.049          | 0.292          | 0.207          |                |
| ND<br>OH | 0.019<br>0.007   | 0.317<br>0.019 | 0.101           | 0.249          | 1.076          | 0.682          | 0.234          |
| OK       | 0.007            | 0.019          | 0.090           | 0.050<br>0.082 | 0.389          | 0.271          | 0.049<br>0.055 |
| OR       | 0.010            | 0.049          | 0.034           | 0.082          | 0.349          | 0.332          | 0.053          |
| PA       | 0.005            | 0.037          | 0.088           | 0.039          | 0.192          | 0.190          | 0.034          |
| RI       | 0.003            | 0.022          | 0.309           | 0.043          | 0.220          | 0.130          | 0.034          |
| SC       | 0.022            | 0.023          | 0.109           | 0.102          | 0.330          | 0.239          | 0.030          |
| SD       | 0.020            | 0.239          | 0.087           | 0.289          | 0.443          | 0.699          | 0.239          |
|          | 0 American Comm  |                |                 |                |                | 3.077          | 3.237          |

Table 24a Continued: Margins of Error of Estimates of Coverage of State by Race

|    |       |       | Non-Hispa       | anic  |       | -     |                   |
|----|-------|-------|-----------------|-------|-------|-------|-------------------|
|    |       | Alone | or in Combinati | on    |       | Alone | Hisponia          |
|    |       |       |                 |       |       | Some  | Hispanic any Race |
|    |       |       |                 |       |       | Other | uny race          |
|    | White | Black | AIAN            | Asian | NHPI  | Race  |                   |
| TN | 0.009 | 0.025 | 0.141           | 0.081 | 0.362 | 0.278 | 0.069             |
| TX | 0.007 | 0.017 | 0.060           | 0.029 | 0.152 | 0.166 | 0.009             |
| UT | 0.015 | 0.142 | 0.117           | 0.098 | 0.262 | 0.438 | 0.059             |
| VT | 0.020 | 0.267 | 0.166           | 0.317 | 3.396 | 1.256 | 0.223             |
| VA | 0.010 | 0.022 | 0.085           | 0.042 | 0.349 | 0.221 | 0.042             |
| WA | 0.009 | 0.054 | 0.066           | 0.034 | 0.141 | 0.157 | 0.037             |
| WV | 0.015 | 0.095 | 0.357           | 0.218 | 0.869 | 0.255 | 0.225             |
| WI | 0.008 | 0.049 | 0.078           | 0.075 | 0.423 | 0.242 | 0.054             |
| WY | 0.028 | 0.179 | 0.221           | 0.200 | 0.275 | 0.601 | 0.150             |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

## **7.4** Coverage of American Indian/Alaska Native Areas and Persons

Table 25 is a good place to explain the decision to focus on the coverage of the race group AIAN alone or in combination, as opposed to AIAN alone. Clearly, there were race reporting differences between the ACS and 2010 Census for AIAN persons. Many persons who were identified as AIAN alone on the 2010 Census were identified as AIAN alone or in combination in the ACS. However, this differential race characterization is not a dilemma if we consider AIAN alone or in combination; either way a respondent was identified, AIAN alone, or AIAN alone or in combination, they were categorized the same way in the comparison between the ACS and the 2010 Census. Since the primary purpose of this research was to measure ACS coverage, to understand the coverage of AIAN persons we chose to focus analysis on the coverage of persons AIAN alone or in combination.

 Table 25: National Coverage for AIAN Alone and AIAN Alone or in Combination

|                     |           |                |             |       | Difference    |
|---------------------|-----------|----------------|-------------|-------|---------------|
|                     | 2010      | Pre-controlled |             |       | from 1.0      |
|                     | Census    | 2010 ACS       | Coverage    |       | Statistically |
|                     | Count     | Estimate       | Ratio       | MOE   | Significant   |
| AIAN Alone          | 2,932,248 | 2,373,966      | 0.810       | 0.012 | Yes           |
| AIAN in Combination | 2,288,331 | 2,480,613      | 1.084       | 0.020 | Yes           |
| AIAN Alone or in    |           |                |             |       |               |
| Combination         | 5,220,579 | 4,854,579      | $0.930^{9}$ | 0.011 | Yes           |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

<sup>9</sup> Neither estimates of AIAN alone nor AIAN alone or in combination are comparable to those found on the ACS Sample Size and Data Quality Web site, as the Web site coverage rates are for an AIAN population defined for the purposes of weighting. Further, on the Web site coverage is calculated by comparing to the 2010 Population Estimates Program estimates.

In Table 25 we see that nationally, estimates of both AIAN alone (0.810) and AIAN alone or in combination (0.930) were undercovered, while AIAN in combination (1.084) was overcovered. The differences seen between AIAN alone or in combination, AIAN alone, and AIAN in combination were most likely due to differences in how race was reported, a topic which merits further research.

Table 26a shows state-level estimates of the coverage of AIAN alone or in combination persons. As we saw in Table 25, the race group AIAN alone or in combination was undercovered at the national level. However, this coverage varies greatly from state to state. Among the states with larger AIAN alone or in combination populations, we see undercoverage for AIAN alone or in combination in California<sup>10</sup> (0.875), Arizona (0.833), and New Mexico (0.786), whereas in Oklahoma<sup>11</sup> (1.075) there was overcoverage. We also see some relatively higher overcoverage ratios for the AIAN alone or in combination persons in several states with smaller AIAN alone or in combination populations, namely Wyoming (1.303) and West Virginia (2.145). We included in Table 26a the coverage ratios for the not AIAN alone or in combination population in each state for comparison; these shed light more on race reporting differences than on coverage.

-

<sup>&</sup>lt;sup>10</sup> The differences between the estimates of coverage for AIAN alone or in combination in Arizona, California, and New Mexico are not statistically significant from each other.

<sup>&</sup>lt;sup>11</sup> The difference between the estimate of coverage for AIAN alone or in combination in Oklahoma is not statistically significant from that of Wyoming

**Table 26a**: Coverage of Persons AIAN Alone or in Combination versus not AIAN Alone or in Combination at the State Level

|       | 1       | IAN Alone or |       | ination       | Not AIAN Alone or in Combination |          |       |               |  |  |
|-------|---------|--------------|-------|---------------|----------------------------------|----------|-------|---------------|--|--|
|       |         |              |       | Difference    |                                  |          |       | Difference    |  |  |
|       | 2010    |              |       | from 1.0      | 2010                             |          |       | from 1.0      |  |  |
|       | Census  | Coverage     |       | Statistically | Census                           | Coverage |       | Statistically |  |  |
| State | Count   | Ratio        | MOE   | Significant   | Count                            | Ratio    | MOE   | Significant   |  |  |
| AL    | 57,118  | 0.943        | 0.110 | No            | 4,722,618                        | 0.910    | 0.010 | Yes           |  |  |
| AK    | 138,312 | 0.945        | 0.052 | Yes           | 571,919                          | 0.953    | 0.028 | Yes           |  |  |
| AZ    | 353,386 | 0.833        | 0.044 | Yes           | 6,038,631                        | 0.922    | 0.008 | Yes           |  |  |
| AR    | 47,588  | 0.871        | 0.103 | Yes           | 2,868,330                        | 0.947    | 0.013 | Yes           |  |  |
| CA    | 723,225 | 0.875        | 0.035 | Yes           | 36,530,731                       | 0.944    | 0.003 | Yes           |  |  |
| CO    | 107,832 | 1.025        | 0.083 | No            | 4,921,364                        | 0.966    | 0.009 | Yes           |  |  |
| CT    | 31,140  | 0.891        | 0.130 | No            | 3,542,957                        | 0.955    | 0.010 | Yes           |  |  |
| DE    | 9,899   | 0.764        | 0.183 | Yes           | 888,035                          | 0.950    | 0.023 | Yes           |  |  |
| DC    | 6,521   | 0.614        | 0.154 | Yes           | 595,202                          | 0.862    | 0.019 | Yes           |  |  |
| FL    | 162,562 | 0.848        | 0.069 | Yes           | 18,638,748                       | 0.894    | 0.004 | Yes           |  |  |
| GA    | 84,024  | 0.771        | 0.071 | Yes           | 9,603,629                        | 0.926    | 0.007 | Yes           |  |  |
| HI    | 33,470  | 1.105        | 0.162 | No            | 1,326,831                        | 0.903    | 0.018 | Yes           |  |  |
| ID    | 36,385  | 1.069        | 0.142 | No            | 1,531,197                        | 0.962    | 0.016 | Yes           |  |  |
| IL    | 101,451 | 0.806        | 0.070 | Yes           | 12,729,181                       | 0.960    | 0.005 | Yes           |  |  |
| IN    | 49,738  | 1.216        | 0.126 | Yes           | 6,434,064                        | 0.959    | 0.008 | Yes           |  |  |
| IA    | 24,511  | 1.274        | 0.180 | Yes           | 3,021,844                        | 0.973    | 0.009 | Yes           |  |  |
| KA    | 59,130  | 1.241        | 0.137 | Yes           | 2,793,988                        | 0.947    | 0.011 | Yes           |  |  |
| KY    | 31,355  | 0.988        | 0.130 | No            | 4,308,012                        | 0.961    | 0.010 | Yes           |  |  |
| LA    | 55,079  | 0.987        | 0.107 | No            | 4,478,293                        | 0.933    | 0.010 | Yes           |  |  |
| ME    | 18,482  | 1.239        | 0.196 | Yes           | 1,309,879                        | 0.980    | 0.013 | Yes           |  |  |
| MD    | 58,657  | 0.869        | 0.118 | Yes           | 5,714,895                        | 0.949    | 0.009 | Yes           |  |  |
| MA    | 50,705  | 0.914        | 0.105 | No            | 6,496,924                        | 0.964    | 0.007 | Yes           |  |  |
| MI    | 139,095 | 1.031        | 0.058 | No            | 9,744,545                        | 0.958    | 0.006 | Yes           |  |  |
| MN    | 101,900 | 0.928        | 0.094 | No            | 5,202,025                        | 0.972    | 0.008 | Yes           |  |  |
| MS    | 25,910  | 1.013        | 0.168 | No            | 2,941,387                        | 0.952    | 0.014 | Yes           |  |  |
| MO    | 72,376  | 1.149        | 0.118 | Yes           | 5,916,551                        | 0.954    | 0.008 | Yes           |  |  |
| MT    | 78,601  | 0.813        | 0.075 | Yes           | 910,814                          | 0.950    | 0.019 | Yes           |  |  |
| NE    | 29,816  | 1.110        | 0.171 | No            | 1,796,525                        | 0.968    | 0.015 | Yes           |  |  |
| NV    | 55,945  | 0.815        | 0.081 | Yes           | 2,644,606                        | 0.926    | 0.012 | Yes           |  |  |
| NH    | 10,524  | 1.189        | 0.216 | No            | 1,305,946                        | 0.981    | 0.016 | Yes           |  |  |
| NJ    | 70,716  | 0.835        | 0.097 | Yes           | 8,721,178                        | 0.965    | 0.007 | Yes           |  |  |
| NM    | 219,512 | 0.786        | 0.053 | Yes           | 1,839,667                        | 0.941    | 0.013 | Yes           |  |  |
| NY    | 221,058 | 0.727        | 0.043 | Yes           | 19,157,044                       | 0.970    | 0.004 | Yes           |  |  |
| NC    | 184,082 | 0.976        | 0.071 | No            | 9,351,401                        | 0.937    | 0.006 | Yes           |  |  |
| ND    | 42,996  | 0.878        | 0.100 | Yes           | 629,595                          | 0.974    | 0.019 | Yes           |  |  |
| OH    | 90,124  | 1.010        | 0.081 | No            | 11,446,380                       | 0.971    | 0.005 | Yes           |  |  |
| OK    | 482,760 | 1.075        | 0.034 | Yes           | 3,268,591                        | 0.923    | 0.008 | Yes           |  |  |
| OR    | 109,223 | 0.942        | 0.082 | No            | 3,721,851                        | 0.968    | 0.010 | Yes           |  |  |
| PA    | 81,092  | 0.870        | 0.077 | Yes           | 12,621,287                       | 0.954    | 0.005 | Yes           |  |  |
| RI    | 14,394  | 0.797        | 0.242 | No            | 1,038,173                        | 0.952    | 0.018 | Yes           |  |  |
| SC    | 42,171  | 0.812        | 0.099 | Yes           | 4,583,193                        | 0.933    | 0.010 | Yes           |  |  |
| SD    | 82,073  | 0.913        | 0.082 | Yes           | 732,107                          | 0.967    | 0.021 | Yes           |  |  |
| TN    | 54,874  | 1.080        | 0.127 | No            | 6,291,231                        | 0.946    | 0.008 | Yes           |  |  |
| TX    | 315,264 | 0.909        | 0.046 | Yes           | 24,830,297                       | 0.944    | 0.004 | Yes           |  |  |

**Table 26a Continued**: Coverage of Persons AIAN Alone or in Combination versus not AIAN Alone or in Combination at the State Level

|       | Al      | AN Alone or | in Comb | ination       | Not AIAN Alone or in Combination |          |       |               |
|-------|---------|-------------|---------|---------------|----------------------------------|----------|-------|---------------|
|       |         |             |         | Difference    |                                  |          |       | Difference    |
|       | 2010    |             |         | from 1.0      | 2010                             |          |       | from 1.0      |
|       | Census  | Coverage    |         | Statistically | Census                           | Coverage |       | Statistically |
| State | Count   | Ratio       | MOE     | Significant   | Count                            | Ratio    | MOE   | Significant   |
| UT    | 50,064  | 0.892       | 0.125   | No            | 2,713,821                        | 0.994    | 0.012 | No            |
| VT    | 7,379   | 0.727       | 0.159   | Yes           | 618,362                          | 0.952    | 0.021 | Yes           |
| VI    | 80,924  | 0.814       | 0.086   | Yes           | 7,920,100                        | 0.948    | 0.008 | Yes           |
| WA    | 198,998 | 0.999       | 0.060   | No            | 6,525,542                        | 0.971    | 0.008 | Yes           |
| WV    | 13,314  | 2.145       | 0.396   | Yes           | 1,839,680                        | 0.951    | 0.014 | Yes           |
| WI    | 86,228  | 1.057       | 0.083   | No            | 5,600,758                        | 0.969    | 0.008 | Yes           |
| WY    | 18,596  | 1.303       | 0.252   | Yes           | 545,030                          | 0.933    | 0.026 | Yes           |

In Table 26b we show the coverage ratios of AIAN alone, and AIAN in combination (only), for states. For reasons discussed earlier, these results are confounded with race reporting differences between the ACS and 2010 Census. We recommend Table 26a for a better understanding of the coverage of AIAN alone or in combination persons for states, as the coverage ratios shown in Table 26a are more robust to race reporting differences. Regarding Table 26b, for many states the AIAN in combination was high, higher than AIAN alone or in combination, or higher than AIAN alone. With a coverage ratio of 1.029 for AIAN in combination, California is an example. We point out that several states with large AIAN populations went against this pattern, such as Arizona and New Mexico. This is due to the presence of the Navajo Nation Reservation in these two states. We discuss this observation again later when we examine the coverage rates for AIAN areas.

Table 26b: AIAN Alone. AIAN in Combination, and AIAN Alone or in Combination by State

|       | AIAN Alone              |                   |       | AIAN in Combination     |                   |       |                   | AIAN Alone or in Combination |  |
|-------|-------------------------|-------------------|-------|-------------------------|-------------------|-------|-------------------|------------------------------|--|
| State | 2010<br>Census<br>Count | Coverage<br>Ratio | МОЕ   | 2010<br>Census<br>Count | Coverage<br>Ratio | МОЕ   | Coverage<br>Ratio | МОЕ                          |  |
| AL    | 28,218                  | 0.978             | 0.176 | 28,900                  | 0.909             | 0.122 | 0.943             | 0.110                        |  |
| AK    | 104,871                 | 0.936             | 0.056 | 33,441                  | 0.976             | 0.116 | 0.945             | 0.052                        |  |
| AZ    | 296,529                 | 0.847             | 0.048 | 56,857                  | 0.758             | 0.093 | 0.833             | 0.044                        |  |
| AR    | 22,248                  | 0.792             | 0.141 | 25,340                  | 0.941             | 0.147 | 0.871             | 0.103                        |  |
| CA    | 362,801                 | 0.722             | 0.040 | 360,424                 | 1.029             | 0.051 | 0.875             | 0.035                        |  |
| CO    | 56,010                  | 0.885             | 0.111 | 51,822                  | 1.176             | 0.115 | 1.025             | 0.083                        |  |
| CT    | 11,256                  | 0.510             | 0.125 | 19,884                  | 1.107             | 0.204 | 0.891             | 0.130                        |  |
| DE    | 4,181                   | 0.512             | 0.206 | 5,718                   | 0.948             | 0.260 | 0.764             | 0.183                        |  |
| DC    | 2,079                   | 0.597             | 0.297 | 4,442                   | 0.622             | 0.171 | 0.614             | 0.154                        |  |
| FL    | 71,458                  | 0.822             | 0.098 | 91,104                  | 0.868             | 0.080 | 0.848             | 0.069                        |  |
| GA    | 32,151                  | 0.664             | 0.117 | 51,873                  | 0.838             | 0.096 | 0.771             | 0.071                        |  |
| HI    | 4,164                   | 0.547             | 0.180 | 29,306                  | 1.184             | 0.180 | 1.105             | 0.162                        |  |
| ID    | 21,441                  | 0.993             | 0.176 | 14,944                  | 1.179             | 0.187 | 1.069             | 0.142                        |  |
| IL    | 43,963                  | 0.658             | 0.099 | 57,488                  | 0.920             | 0.095 | 0.806             | 0.070                        |  |
| IN    | 18,462                  | 0.947             | 0.176 | 31,276                  | 1.375             | 0.180 | 1.216             | 0.126                        |  |
| IA    | 11,084                  | 0.884             | 0.190 | 13,427                  | 1.595             | 0.287 | 1.274             | 0.180                        |  |
| KS    | 28,150                  | 0.964             | 0.148 | 30,980                  | 1.493             | 0.205 | 1.241             | 0.137                        |  |
| KY    | 10,120                  | 0.903             | 0.215 | 21,235                  | 1.029             | 0.174 | 0.988             | 0.130                        |  |
| LA    | 30,579                  | 0.946             | 0.158 | 24,500                  | 1.039             | 0.147 | 0.987             | 0.107                        |  |
| ME    | 8,568                   | 0.763             | 0.149 | 9,914                   | 1.650             | 0.341 | 1.239             | 0.196                        |  |
| MD    | 20,420                  | 0.840             | 0.246 | 38,237                  | 0.884             | 0.139 | 0.869             | 0.118                        |  |
| MA    | 18,850                  | 0.772             | 0.163 | 31,855                  | 0.998             | 0.145 | 0.914             | 0.105                        |  |
| MI    | 62,007                  | 0.963             | 0.077 | 77,088                  | 1.085             | 0.082 | 1.031             | 0.058                        |  |
| MN    | 60,916                  | 0.883             | 0.104 | 40,984                  | 0.995             | 0.141 | 0.928             | 0.094                        |  |
| MS    | 15,030                  | 0.873             | 0.194 | 10,880                  | 1.206             | 0.304 | 1.013             | 0.168                        |  |
| MO    | 27,376                  | 0.811             | 0.125 | 45,000                  | 1.354             | 0.167 | 1.149             | 0.118                        |  |
| MT    | 62,555                  | 0.800             | 0.085 | 16,046                  | 0.863             | 0.164 | 0.813             | 0.075                        |  |
| NE    | 18,427                  | 0.848             | 0.171 | 11,389                  | 1.535             | 0.321 | 1.110             | 0.171                        |  |
| NV    | 32,062                  | 0.749             | 0.102 | 23,883                  | 0.904             | 0.147 | 0.815             | 0.081                        |  |
| NH    | 3,150                   | 1.086             | 0.434 | 7,374                   | 1.234             | 0.260 | 1.189             | 0.216                        |  |
| NJ    | 29,026                  | 0.593             | 0.125 | 41,690                  | 1.003             | 0.144 | 0.835             | 0.097                        |  |
| NM    | 193,222                 | 0.799             | 0.056 | 26,290                  | 0.691             | 0.109 | 0.786             | 0.053                        |  |
| NY    | 106,906                 | 0.591             | 0.059 | 114,152                 | 0.854             | 0.065 | 0.727             | 0.043                        |  |
| NC    | 122,110                 | 0.784             | 0.077 | 61,972                  | 1.355             | 0.133 | 0.976             | 0.071                        |  |
| ND    | 36,591                  | 0.817             | 0.102 | 6,405                   | 1.226             | 0.309 | 0.878             | 0.100                        |  |
| ОН    | 25,292                  | 0.889             | 0.144 | 64,832                  | 1.057             | 0.103 | 1.010             | 0.081                        |  |
| OK    | 321,687                 | 0.822             | 0.035 | 161,073                 | 1.580             | 0.074 | 1.075             | 0.034                        |  |
| OR    | 53,203                  | 0.904             | 0.107 | 56,020                  | 0.978             | 0.098 | 0.942             | 0.082                        |  |
| PA    | 26,843                  | 0.685             | 0.100 | 54,249                  | 0.962             | 0.093 | 0.870             | 0.077                        |  |
| RI    | 6,058                   | 0.411             | 0.144 | 8,336                   | 1.077             | 0.393 | 0.797             | 0.242                        |  |
| SC    | 19,524                  | 0.575             | 0.108 | 22,647                  | 1.015             | 0.172 | 0.812             | 0.099                        |  |

 Table 26b Continued:
 AIAN Alone.
 AIAN in Combination, and AIAN Alone or in

Combination by State

|       | AIAN Alone              |                   |       | AIAN in Combination     |                   |       | AIAN Alone or in Combination |       |
|-------|-------------------------|-------------------|-------|-------------------------|-------------------|-------|------------------------------|-------|
| State | 2010<br>Census<br>Count | Coverage<br>Ratio | МОЕ   | 2010<br>Census<br>Count | Coverage<br>Ratio | МОЕ   | Coverage<br>Ratio            | МОЕ   |
| SD    | 71,817                  | 0.900             | 0.089 | 10,256                  | 1.001             | 0.208 | 0.913                        | 0.082 |
| TN    | 19,994                  | 0.872             | 0.198 | 34,880                  | 1.198             | 0.172 | 1.080                        | 0.127 |
| TX    | 170,972                 | 0.763             | 0.060 | 144,292                 | 1.083             | 0.076 | 0.909                        | 0.046 |
| UT    | 32,927                  | 0.912             | 0.125 | 17,137                  | 0.853             | 0.233 | 0.892                        | 0.125 |
| VT    | 2,207                   | 0.750             | 0.278 | 5,172                   | 0.717             | 0.187 | 0.727                        | 0.159 |
| VA    | 29,225                  | 0.817             | 0.148 | 51,699                  | 0.812             | 0.103 | 0.814                        | 0.086 |
| WA    | 103,869                 | 0.943             | 0.079 | 95,129                  | 1.060             | 0.082 | 0.999                        | 0.060 |
| WV    | 3,787                   | 0.846             | 0.380 | 9,527                   | 2.662             | 0.517 | 2.145                        | 0.396 |
| WI    | 54,526                  | 0.818             | 0.081 | 31,702                  | 1.467             | 0.197 | 1.057                        | 0.083 |
| WY    | 13,336                  | 0.902             | 0.237 | 5,260                   | 2.322             | 0.760 | 1.303                        | 0.252 |

Source: 2010 American Community Survey 1 year Data and 2010 Census Data

Table 27 shows the coverage of the total population for the 20 largest AIAN areas according to the 2010 Census and 2010 ACS 1-year estimates. (Note that the definition of AIAN areas includes Alaska native village statistical areas<sup>12</sup>). We see, generally, there was undercoverage of AIAN areas. It is important to note that no AIAN area had statistically significant overcoverage.

-

<sup>&</sup>lt;sup>12</sup> AIAN areas include but are not restricted to American Indian reservations and trust lands, tribal jurisdiction statistical areas, Alaska native regional corporations, Alaska native village statistical areas, and tribal designated statistical areas. For a complete listing and detailed description of types of AIAN areas go to the Census Bureau webpage, http://www.census.gov/geo/www/2010census/gtc/gtc\_aiannha.html.

**Table 27**: Coverage in the 20 largest AIAN Areas

| Table 27. Coverage in the 20 largest 74741 741eas            |         |        |       | D:66          |
|--------------------------------------------------------------|---------|--------|-------|---------------|
|                                                              | 2010    | Cover- |       | Difference    |
|                                                              |         |        |       | from 1.0      |
|                                                              | Census  | age    | MOE   | Statistically |
| 12                                                           | Count   | Ratio  | MOE   | Significant   |
| Creek OTSA <sup>13</sup> , OK                                | 758,622 | 0.946  | 0.023 | Yes           |
| Cherokee OTSA, OK                                            | 505,021 | 0.984  | 0.027 | No            |
| Lumbee (state) SDTSA <sup>14</sup> , NC                      | 490,899 | 0.947  | 0.035 | Yes           |
| Chickasaw OTSA, OK                                           | 302,861 | 0.924  | 0.041 | Yes           |
| Choctaw OTSA, OK                                             | 233,126 | 0.943  | 0.041 | Yes           |
| United Houma Nation (state) SDTSA, LA                        | 203,077 | 0.963  | 0.060 | No            |
| Kiowa-Comanche-Apache-Fort Sill Apache OTSA, OK              | 197,781 | 0.992  | 0.047 | No            |
| Cheyenne-Arapaho OTSA, OK                                    | 174,108 | 0.913  | 0.042 | Yes           |
| Navajo Nation Reservation and Off-Reservation, AZ-NM-UT      | 173,667 | 0.837  | 0.048 | Yes           |
| Citizen Potawatomi Nation-Absentee Shawnee OTSA, OK          | 117,911 | 0.913  | 0.061 | Yes           |
| Cherokees of Southeast Alabama (state) SDTSA, AL             | 83,668  | 0.944  | 0.042 | Yes           |
| Knik ANVSA <sup>15</sup> , AK                                | 65,768  | 0.876  | 0.071 | Yes           |
| Sac and Fox OTSA, OK                                         | 57,450  | 0.873  | 0.074 | Yes           |
| Coharie (state) SDTSA, NC                                    | 56,432  | 0.906  | 0.062 | Yes           |
| Echota Cherokee (state) SDTSA, AL                            | 53,622  | 0.885  | 0.092 | Yes           |
| Osage Reservation, OK                                        | 47,472  | 0.831  | 0.090 | Yes           |
| Puyallup Reservation and Off-Reservation Trust Land, WA      | 46,816  | 0.956  | 0.082 | No            |
| Samish TDSA <sup>16</sup> , WA                               | 36,727  | 1.004  | 0.066 | No            |
| Kenaitze ANVSA, AK                                           | 32,902  | 1.036  | 0.114 | No            |
| Yakama Nation Reservation and Off-Reservation Trust Land, WA | 31,272  | 0.941  | 0.141 | No            |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 28 we see that in AIAN areas, the coverage ratios of AIAN alone or in combination 17 (0.919), AIAN alone (0.819), not AIAN alone or in combination (0.944), and of the total population (0.938) were all undercovered. The coverage ratio of AIAN in combination (only) at 1.455, was an artifact of race reporting differences. The coverage of the total population living in AIAN areas was lower than that of the total population of the nation (0.948, see Table 2).

<sup>&</sup>lt;sup>13</sup> Oklahoma Tribal Statistical Area

State Designated Tribal Statistical Area
 Alaska Native Village Statistical Area

<sup>&</sup>lt;sup>16</sup> Tribal Designated Statistical Area

<sup>&</sup>lt;sup>17</sup> The differences between the coverage ratios of AIAN alone or in combination, not AIAN alone or in combination, and of the total population residing in AIAN areas are not statistically significant.

**Table 28**: Coverage of AIAN Alone or in Combination versus not AIAN Alone or in Combination for AIAN Areas

|                          |             |          |       | Difference from 1.0 |
|--------------------------|-------------|----------|-------|---------------------|
|                          | 2010 Census | Coverage |       | Statistically       |
|                          | Count       | Ratio    | MOE   | Significant         |
| AIAN Alone or in         |             |          |       |                     |
| Combination              | 1,147,552   | 0.919    | 0.021 | Yes                 |
| AIAN Alone               | 967,135     | 0.819    | 0.018 | Yes                 |
| AIAN in combination      | 180,417     | 1.455    | 0.076 | Yes                 |
| Not AIAN Alone or in     |             |          |       |                     |
| Combination              | 3,671,188   | 0.944    | 0.011 | Yes                 |
| Total Population in AIAN |             |          |       |                     |
| Areas                    | 4,818,740   | 0.938    | 0.009 | Yes                 |

Table 29a shows the coverage ratios of the 20 largest AIAN areas for 2010 ACS 1-year estimates for the race group AIAN alone or in combination. For comparison it also shows the coverage ratios for the not AIAN alone or in combination population in these AIAN areas.

We make the following observations from Table 29a.

- There was overcoverage of the AIAN alone or in combination population in the Creek OTSA, OK<sup>18</sup> (1.146) and Cherokee OTSA, OK (1.067) areas. In contrast, there was overcoverage of the not AIAN alone or in combination in both of these areas as well (0.915 and 0.956)<sup>19</sup>.
- There was undercoverage of the AIAN alone or in combination population in seven of the largest 20 AIAN areas.
- There was undercoverage of the not AIAN alone or in combination population in thirteen of the 20 largest AIAN areas.
- There was overcoverage of the not AIAN alone or in combination population in only the Navajo Reservation and Off-Reservation-AZ-NM-UT (1.687), though the population involved was small at 4,346 and the MOE was large.

<sup>18</sup> The difference between the coverage rates of AIAN alone or in combination in Creek OTSA and that of Cherokee OTSA is not statistically significant.

<sup>&</sup>lt;sup>19</sup> The difference between the coverage rates of not AIAN alone or in combination in Creek OTSA and that of Cherokee OTSA is not statistically significant.

**Table 29a**: Coverage of AIAN Alone or in Combination versus not AIAN Alone or in Combination for the 20 Largest AIAN Areas

|                                                                    | AIAN Alone or in Combination |                        |       | Not AIAN Alone or in Combination                       |                         |                        |       |                                                        |
|--------------------------------------------------------------------|------------------------------|------------------------|-------|--------------------------------------------------------|-------------------------|------------------------|-------|--------------------------------------------------------|
|                                                                    | 2010<br>Census<br>Count      | Cov-<br>erage<br>Ratio |       | Difference<br>from 1.0<br>Statistically<br>Significant | 2010<br>Census<br>Count | Cov-<br>erage<br>Ratio |       | Difference<br>from 1.0<br>Statistically<br>Significant |
| Creek OTSA, OK                                                     | 99,451                       | 1.146                  | 0.088 |                                                        | 659,171                 | 0.915                  | 0.023 | Yes                                                    |
| Cherokee OTSA, OK                                                  | 125,440                      | 1.067                  | 0.063 | Yes                                                    | 379,581                 | 0.956                  | 0.034 | Yes                                                    |
| Lumbee (state) SDTSA, NC                                           | 71,754                       | 0.897                  | 0.106 | No                                                     | 419,145                 | 0.955                  | 0.038 | Yes                                                    |
| Chickasaw OTSA, OK                                                 | 41,048                       | 1.047                  | 0.144 | No                                                     | 261,813                 | 0.904                  | 0.043 | Yes                                                    |
| Choctaw OTSA, OK                                                   | 47,649                       | 1.050                  | 0.118 | No                                                     | 185,477                 | 0.915                  | 0.039 | Yes                                                    |
| United Houma Nation (state)<br>SDTSA, LA                           | 9,990                        | 0.772                  | 0.259 | No                                                     | 193,087                 | 0.973                  | 0.064 | No                                                     |
| Kiowa-Comanche-Apache-<br>Fort Sill Apache OTSA, OK                | 16,249                       | 1.199                  | 0.210 | No                                                     | 181,532                 | 0.974                  | 0.046 | No                                                     |
| Cheyenne-Arapaho OTSA,<br>OK                                       | 13,145                       | 0.700                  | 0.166 | Yes                                                    | 160,963                 | 0.930                  | 0.043 | Yes                                                    |
| Navajo Nation Reservation<br>and Off-Reservation, AZ-<br>NM-UT     | 169,321                      | 0.815                  | 0.049 | Yes                                                    | 4,346                   | 1.687                  | 0.482 | Yes                                                    |
| Citizen Potawatomi Nation-<br>Absentee Shawnee OTSA,<br>OK         | 13,463                       | 0.897                  | 0.199 | No                                                     | 104,448                 | 0.915                  | 0.065 | Yes                                                    |
| Cherokees of Southeast<br>Alabama (state) SDTSA, AL                | 842                          | 0.640                  | 0.280 | Yes                                                    | 82,826                  | 0.947                  | 0.043 | Yes                                                    |
| Knik ANVSA, AK                                                     | 6,582                        | 1.097                  | 0.312 | No                                                     | 59,186                  | 0.851                  | 0.077 | Yes                                                    |
| Sac and Fox OTSA, OK                                               | 8,347                        | 0.645                  | 0.189 | Yes                                                    | 49,103                  | 0.912                  | 0.078 | Yes                                                    |
| Coharie (state) SDTSA, NC                                          | 1,757                        | 0.867                  | 0.291 | No                                                     | 54,675                  | 0.907                  | 0.062 | Yes                                                    |
| Echota Cherokee (state)<br>SDTSA, AL                               | 3,590                        | 0.577                  | 0.323 | Yes                                                    | 50,032                  | 0.907                  | 0.092 | Yes                                                    |
| Osage Reservation, OK                                              | 9,920                        | 0.748                  | 0.179 | Yes                                                    | 37,552                  | 0.852                  | 0.105 | Yes                                                    |
| Puyallup Reservation and<br>Off-Reservation Trust Land,<br>WA      | 2,127                        | 0.501                  | 0.298 | Yes                                                    | 44,689                  | 0.978                  | 0.086 | No                                                     |
| Samish TDSA, WA                                                    | 801                          | 1.366                  | 0.487 | No                                                     | 35,926                  | 0.996                  | 0.068 | No                                                     |
| Kenaitze ANVSA, AK                                                 | 3,417                        | 0.938                  | 0.418 | No                                                     | 29,485                  |                        |       | No                                                     |
| Yakama Nation Reservation<br>and Off-Reservation Trust<br>Land, WA | 8,022                        |                        | 0.272 | No                                                     | 23,250                  |                        | 0.167 | No                                                     |

In Table 29b we show the coverage ratios of AIAN alone and AIAN in combination for the 20 largest AIAN areas. For reasons discussed earlier, the AIAN alone coverage is confounded with race reporting differences between the ACS and 2010 Census that the AIAN alone or in combination was more robust to. Almost all AIAN or in combination persons in the Navajo Nation Reservation identified themselves as AIAN alone. Hence their coverage ratios for AIAN alone and AIAN alone or in combination were close.

**Table 29b**: Coverage of AIAN Alone and AIAN in Combination for the 20 Largest AIAN Areas

|                                                                    | AIAN Alone |          |       | AIAI   | N in Combina | ation |
|--------------------------------------------------------------------|------------|----------|-------|--------|--------------|-------|
|                                                                    | 2010       |          |       | 2010   |              |       |
|                                                                    | Census     | Coverage |       | Census | Coverage     |       |
|                                                                    | Count      | Ratio    | MOE   | Count  | Ratio        | MOE   |
| Creek OTSA, OK                                                     | 63,608     | 0.914    | 0.095 | 35,843 | 1.558        | 0.160 |
| Cherokee OTSA, OK                                                  | 89,808     | 0.804    | 0.066 | 35,632 | 1.731        | 0.136 |
| Lumbee (state) SDTSA, NC                                           | 64,300     | 0.725    | 0.101 | 7,454  | 2.373        | 0.613 |
| Chickasaw OTSA, OK                                                 | 26,862     | 0.707    | 0.122 | 14,186 | 1.691        | 0.297 |
| Choctaw OTSA, OK                                                   | 33,869     | 0.741    | 0.108 | 13,780 | 1.809        | 0.293 |
| United Houma Nation(state)<br>SDTSA, LA                            | 7,919      | 0.803    | 0.294 | 2,071  | 0.654        | 0.387 |
| Kiowa-Comanche-Apache-<br>Fort Sill Apache OTSA                    | 11,138     | 0.969    | 0.196 | 5,111  | 1.700        | 0.474 |
| Cheyenne-Arapaho OTSA,<br>OK                                       | 8,896      | 0.709    | 0.201 | 4,249  | 0.681        | 0.241 |
| Navajo Nation Reservation<br>and Off-Reservation, AZ-<br>NM-UT     | 166,824    | 0.820    | 0.050 | 2,497  | 0.489        | 0.193 |
| Citizen Potawatomi Nation-<br>Absentee Shawnee OTSA                | 8,566      | 0.457    | 0.147 | 4,897  | 1.668        | 0.523 |
| Cherokees of Southeast<br>Alabama (state) SDTSA                    | 337        | 0.806    | 0.465 | 505    | 0.529        | 0.482 |
| Knik ANVSA, AK                                                     | 3,529      | 1.118    | 0.371 | 3,053  | 1.073        | 0.454 |
| Sac and Fox OTSA, OK                                               | 5,798      | 0.536    | 0.193 | 2,549  | 0.892        | 0.341 |
| Coharie (state) SDTSA, NC                                          | 1,192      | 1.045    | 0.372 | 565    | 0.491        | 0.303 |
| Echota Cherokee (state)<br>SDTSA, AL                               | 2,139      | 0.462    | 0.258 | 1,451  | 0.748        | 0.682 |
| Osage Reservation, OK                                              | 6,858      | 0.657    | 0.203 | 3,062  | 0.950        | 0.329 |
| Puyallup Reservation and<br>Off-Reservation Trust Land,<br>WA      | 1,282      | 0.352    | 0.377 | 845    | 0.727        | 0.485 |
| Samish TDSA, WA                                                    | 310        | 1.868    | 0.862 | 491    | 1.048        | 0.513 |
| Kenaitze ANVSA, AK                                                 | 2,001      | 0.775    | 0.526 | 1,416  | 1.168        | 0.776 |
| Yakama Nation Reservation<br>and Off-Reservation Trust<br>Land, WA | 7,239      | 1.069    | 0.316 | 783    | 0.746        | 0.743 |

In Table 30a we see that both males (0.928) and females (0.948) were undercovered in AIAN areas. As seen in earlier in Table 12, the coverage ratio for females in AIAN areas was not significantly different than that of the nation (0.954), but the coverage ratio for males in AIAN areas was less than that of the nation (0.942).

Table 30a: Coverage in AIAN Areas by Sex

| Sex    | Coverage Ratio | MOE   | Difference from 1.0 Statistically Significant |
|--------|----------------|-------|-----------------------------------------------|
| Female | 0.948          | 0.010 | Yes                                           |
| Male   | 0.928          | 0.010 | Yes                                           |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 30b, we see that the undercoverage in AIAN areas across all age groups was statistically significant except for age groups 55-64 and 75+. Generally, the differences in the coverage ratios between the AIAN areas and the national totals were not statistically significant (see Table 13). The only exception was the 65-74 (0.948) age group, which saw higher coverage at the national level (0.983).

**Table 30b**: Coverage in AIAN Areas by Age Groups

|           |          |       | <i>8</i>      |
|-----------|----------|-------|---------------|
|           |          |       | Difference    |
|           |          |       | from 1.0      |
|           | Coverage |       | Statistically |
| Age Group | Ratio    | MOE   | Significant   |
| 0-4       | 0.950    | 0.030 | Yes           |
| 5-14      | 0.935    | 0.022 | Yes           |
| 15-17     | 0.915    | 0.029 | Yes           |
| 18-19     | 0.916    | 0.049 | Yes           |
| 20-24     | 0.890    | 0.028 | Yes           |
| 25-29     | 0.909    | 0.031 | Yes           |
| 30-34     | 0.947    | 0.032 | Yes           |
| 35-44     | 0.928    | 0.020 | Yes           |
| 45-49     | 0.921    | 0.027 | Yes           |
| 50-54     | 0.944    | 0.027 | Yes           |
| 55-64     | 0.983    | 0.024 | No            |
| 65-74     | 0.948    | 0.023 | Yes           |
| 75+       | 0.974    | 0.027 | No            |

Source: 2010 American Community Survey 1-year Data and 2010

Census Data

In Table 30c we see the coverage ratios of females and males crossed by age group. For comparison to national results, see Table 15. In AIAN areas, the differences in the coverage ratios for females were not statistically significant from the national level. The differences in the coverage ratios for males were not statistically significant from those at the national level except for age groups  $50-54^{20}$  (0.901) and 65-74 (0.935), whose national coverage ratios were 0.944 and 0.980 respectively.

\_

<sup>&</sup>lt;sup>20</sup> The difference between the coverage rates of male 50-54 and male 65-74 is not statistically significant.

Table 30c: Coverage in AIAN Areas broken down by Sex and Age Group

| Tuble buc. Co | I            | I THE AS DION     |       | by Ben und 11                                          |
|---------------|--------------|-------------------|-------|--------------------------------------------------------|
| Sex           | Age<br>Group | Coverage<br>Ratio | МОЕ   | Difference<br>from 1.0<br>Statistically<br>Significant |
| Female        | 0-4          | 0.963             | 0.041 | No                                                     |
|               | 5-14         | 0.946             | 0.029 | Yes                                                    |
|               | 15-17        | 0.916             | 0.040 | Yes                                                    |
|               | 18-19        | 0.914             | 0.059 | Yes                                                    |
|               | 20-24        | 0.904             | 0.039 | Yes                                                    |
|               | 25-29        | 0.914             | 0.035 | Yes                                                    |
|               | 30-34        | 0.937             | 0.038 | Yes                                                    |
|               | 35-44        | 0.940             | 0.022 | Yes                                                    |
|               | 45-49        | 0.928             | 0.030 | Yes                                                    |
|               | 50-54        | 0.985             | 0.033 | No                                                     |
|               | 55-64        | 0.995             | 0.026 | No                                                     |
|               | 65-74        | 0.960             | 0.027 | Yes                                                    |
|               | 75+          | 0.954             | 0.032 | Yes                                                    |
| Male          | 0-4          | 0.938             | 0.037 | Yes                                                    |
|               | 5-14         | 0.924             | 0.029 | Yes                                                    |
|               | 15-17        | 0.914             | 0.043 | Yes                                                    |
|               | 18-19        | 0.919             | 0.064 | Yes                                                    |
|               | 20-24        | 0.877             | 0.040 | Yes                                                    |
|               | 25-29        | 0.904             | 0.039 | Yes                                                    |
|               | 30-34        | 0.956             | 0.044 | No                                                     |
|               | 35-44        | 0.915             | 0.025 | Yes                                                    |
|               | 45-49        | 0.914             | 0.036 | Yes                                                    |
|               | 50-54        | 0.901             | 0.030 | Yes                                                    |
|               | 55-64        | 0.970             | 0.028 | Yes                                                    |
|               | 65-74        | 0.935             | 0.027 | Yes                                                    |
|               | 75+          | 1.004             | 0.037 | No                                                     |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 31a we see that coverage ratios for most of the 20 largest tribal groupings were not significantly different from 1.0. Among the larger AIAN tribal groupings, several had coverage ratios close to 1.0, for example Cherokee<sup>21</sup> (1.010), Chippewa (1.003), and Sioux (1.051). Only six tribal groupings, notably Navajo (0.911), showed undercoverage.

 $<sup>^{21}</sup>$  The differences in the coverage rates between Cherokee, Chippewa, and Sioux were not statistically significant.

**Table 31a**: Largest 20 AIAN alone One Tribal Grouping Reported using the 1-Year ACS

| Lange of the Europe 20 mm in | 2010    | 1 0      | 1     |                           |
|------------------------------|---------|----------|-------|---------------------------|
| Tribal                       | Census  | Coverage |       | Difference from 1.0       |
| Grouping                     | Count   | Ratio    | MOE   | Statistically Significant |
| Navajo                       | 286,731 | 0.911    | 0.047 | Yes                       |
| Cherokee                     | 284,247 | 1.010    | 0.044 | No                        |
| Chippewa                     | 112,757 | 1.003    | 0.070 | No                        |
| Sioux                        | 112,176 | 1.051    | 0.075 | No                        |
| Choctaw                      | 103,910 | 0.835    | 0.071 | Yes                       |
| Apache                       | 63,193  | 0.961    | 0.094 | No                        |
| Lumbee                       | 62,306  | 0.901    | 0.124 | No                        |
| Pueblo                       | 49,695  | 0.940    | 0.119 | No                        |
| Creek                        | 48,352  | 0.927    | 0.095 | No                        |
| Iroquois                     | 40,570  | 1.073    | 0.112 | No                        |
| Chickasaw                    | 27,973  | 0.691    | 0.108 | Yes                       |
| Blackfeet                    | 27,279  | 0.793    | 0.143 | Yes                       |
| Inupiat                      | 24,859  | 2.150    | 0.204 | Yes                       |
| Pima                         | 22,040  | 0.813    | 0.205 | No                        |
| Yaqui                        | 21,679  | 0.728    | 0.124 | Yes                       |
| Potawatomi                   | 20,412  | 0.882    | 0.178 | No                        |
| Tohono O'Odham               | 19,522  | 1.056    | 0.292 | No                        |
| Alaska Athabaskan            | 15,623  | 1.109    | 0.214 | No                        |
| Tlingit-Haida                | 15,256  | 1.096    | 0.284 | No                        |
| Puget Sound Salish           | 14,320  | 0.839    | 0.140 | Yes                       |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

One tribal grouping, Inupiat (2.150), had noteworthy overcoverage. This overcoverage was possibly due to Remote Alaska cases in the Bethel, Dillingham, and Wade Hampton Census Areas, which have a relatively high concentration of Inupiats. Remote areas of Alaska provide special difficulties when interviewing, such as climate, travel, and seasonality of the population (U.S. Census Bureau, 2009). These areas have special data collection procedures, including but not limited to conducting interviews only in certain months and no mail or telephone interviews. Both the differences in the data collection methods or in the time of interview could lead to differences in ACS and 2010 Census estimates for this seasonal population.

There were large MOEs for the AIAN tribal groupings with smaller populations, which leads us to Table 31b, where we used 2006-2010 ACS 5-year data instead of 1-year data in the calculation of coverage ratios to obtain more reliable coverage estimates. However, we note that the coverage ratios of the largest tribal groupings were lower for the 5-year estimates than the 1-year estimates, probably because the comparison between 1-year and 5-year estimates are confounded with growth in population over time (see Section 6, Limitations). It is a general demographic trend in the United States that population increases over time. Thus the 5-year ACS estimates would include smaller population sizes in the earlier years, 2006-2009. We see, for example, that the Navajo coverage ratio was 0.911 for the 1-year ACS estimates compared to

0.822 for the 5-year. This difference was possibly a result of growth in the Navajo population over the 5-year period. Because of these possible confounding effects, we are reluctant to draw conclusions from Table 31b, despite the smaller MOEs.

**Table 31b**: Largest 20 AIAN alone One Tribal Grouping Reported Using the 2006-2010 ACS 5-Year Estimates

|                    | 2010    |          |       | Difference from   |
|--------------------|---------|----------|-------|-------------------|
|                    | Census  | Coverage |       | 1.0 Statistically |
| Tribal Grouping    | Count   | Ratio    | MOE   | Significant       |
| Navajo             | 286,731 | 0.822    | 0.021 | Yes               |
| Cherokee           | 284,247 | 0.966    | 0.019 | Yes               |
| Chippewa           | 112,757 | 0.922    | 0.029 | Yes               |
| Sioux              | 112,176 | 0.933    | 0.031 | Yes               |
| Choctaw            | 103,910 | 0.797    | 0.027 | Yes               |
| Apache             | 63,193  | 0.896    | 0.040 | Yes               |
| Lumbee             | 62,306  | 0.893    | 0.049 | Yes               |
| Pueblo             | 49,695  | 1.116    | 0.050 | Yes               |
| Creek              | 48,352  | 0.843    | 0.039 | Yes               |
| Iroquois           | 40,570  | 1.164    | 0.055 | Yes               |
| Chickasaw          | 27,973  | 0.729    | 0.049 | Yes               |
| Blackfeet          | 27,279  | 0.846    | 0.050 | Yes               |
| Inupiat            | 24,859  | 1.971    | 0.076 | Yes               |
| Pima               | 22,040  | 0.930    | 0.094 | No                |
| Yaqui              | 21,679  | 0.779    | 0.071 | Yes               |
| Potawatomi         | 20,412  | 0.816    | 0.049 | Yes               |
| Tohono O'Odham     | 19,522  | 0.902    | 0.097 | Yes               |
| Alaska Athabaskan  | 15,623  | 0.910    | 0.061 | Yes               |
| Tlingit-Haida      | 15,256  | 0.956    | 0.078 | No                |
| Puget Sound Salish | 14,320  | 0.873    | 0.088 | Yes               |

Source: 2006-2010 American Community Survey 1 year Data and 2010 Census Data

In Table 32 we see coverage for males<sup>22</sup> (0.928) and females (0.931) in the AIAN alone or in combination population were less than the corresponding ratios for males and females for the nation, which were 0.942 and 0.954 respectively.

Table 32: National Coverage Ratios of AIAN Alone or in Combination by Sex

| Sex    | Coverage Ratio | MOE   | Difference from 1.0 Statistically Significant |
|--------|----------------|-------|-----------------------------------------------|
| Female | 0.931          | 0.013 | Yes                                           |
| Male   | 0.928          | 0.012 | Yes                                           |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

<sup>&</sup>lt;sup>22</sup> The difference in the coverage rate between males and females for the AIAN alone or in combination population is not statistically significant.

In Table 33, we see that the  $18-19^{23}$  (0.859), 25-29 (0.852), 30-34 (0.904), 50-54<sup>24</sup> (0.985), 55-64 (1.031), and 65-74 (1.019) age groups were different from the total population seen in Table 13 (0.898, 0.918, 0.944, 0.954, 0.968, and 0.983 respectively). Elsewhere, the results were not different than the total population.

Coverage for AIAN alone or in combination varied by age. The coverage of adults 55-64 (1.031) was notably higher for AIAN alone or in combination than it was for the overall population, 0.968 (seen in Table 13). The coverage of the 25-29 (0.852) and 30-34 (0.904) age groups were much lower than they were for the rest of the population for the total population (0.918 and 0.944 respectively).

**Table 33**: National Coverage Ratios of AIAN Alone or in Combination broken down by Age Group

| •         |                |       | Difference from 1.0       |
|-----------|----------------|-------|---------------------------|
| Age Group | Coverage Ratio | MOE   | Statistically Significant |
| 0-4       | 0.922          | 0.033 | Yes                       |
| 5-14      | 0.910          | 0.021 | Yes                       |
| 15-17     | 0.926          | 0.031 | Yes                       |
| 18-19     | 0.859          | 0.037 | Yes                       |
| 20-24     | 0.879          | 0.029 | Yes                       |
| 25-29     | 0.852          | 0.026 | Yes                       |
| 30-34     | 0.904          | 0.027 | Yes                       |
| 35-44     | 0.926          | 0.021 | Yes                       |
| 45-49     | 0.933          | 0.025 | Yes                       |
| 50-54     | 0.985          | 0.028 | No                        |
| 55-64     | 1.031          | 0.025 | Yes                       |
| 65-74     | 1.019          | 0.033 | No                        |
| 75+       | 0.989          | 0.038 | No                        |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

# **7.5** Coverage of the Group Quarters Population

Table 34 shows the coverage ratio of GQ population in the 2010 ACS 1-year was 0.810, which was substantially lower than that of the household population, 0.952 (see Table 9). A probable contributing factor to lower GQ person coverage was that the ACS 2010 GQ sampling frame had only minimal updates since the Census 2000 listing of GQ facilities was compiled. We also note that military GQs and college/university student housing both had special reasons for low coverage rates, as we discuss shortly.

<sup>23</sup> There are no statistically significant differences between the 18-19, 25-29, and 30-34 age groups.

<sup>&</sup>lt;sup>24</sup> There are no statistically significant differences between the 50-54, 55-64, and 65-74 age groups.

**Table 34:** National Group Quarters Population Coverage

| 2010 Census Count | Coverage Ratio | MOE   |
|-------------------|----------------|-------|
| 7,987,323         | 0.810          | 0.011 |

Table 35 shows the coverage of the ACS GQ population broken down by seven major types of GQ facilities. The categorization by seven major types shown in the tables is used in assigning the weights and is a convenient categorization here (U.S. Census Bureau, 2009). Major GQ type is relevant because people in different types of GQ facilities differ from each other in consistent, predictable ways.

There was undercoverage of persons living in nursing/skilled nursing facilities (0.973), college/university student housing (0.624)<sup>25</sup>, military GQs (0.709), and other noninstitutional facilities (0.657). In adult correctional facilities, juvenile facilities, and other health care facilities, there was no significant undercoverage or overcoverage.

Residents in college/university student housing were counted across all twelve months, though they are typically not residents in the summer, while the 2010 Census counted them in April<sup>26</sup>. For this reason we expected lower coverage in these GQ facilities. Also, whereas the 2010 Census counted deployed military personnel while the ACS does not, which explains at least in part the lower coverage in these facilities.

**Table 35:** Coverage by Major Type of Group Quarters

|                                    | 2010 Census |                |       |
|------------------------------------|-------------|----------------|-------|
| Major Type of GQ                   | Count       | Coverage Ratio | MOE   |
| Adult correctional facilities      | 2,261,813   | 0.993          | 0.029 |
| Juvenile facilities                | 151,315     | 0.879          | 0.129 |
| Nursing/Skilled nursing facilities | 1,502,264   | 0.973          | 0.018 |
| Other health care facilities       | 76,478      | 0.879          | 0.139 |
| College/university student housing | 2,521,090   | 0.624          | 0.015 |
| Military group quarters            | 339,980     | 0.709          | 0.059 |
| Other noninstitutional facilities  | 1,134,383   | 0.657          | 0.024 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 36 we see a pattern in the coverage ratios by institutional (adult correctional facilities, juvenile facilities, nursing/skilled nursing facilities, and other health care facilities) and noninstitutional GQs (college/university student housing, military GQs, and other institutional facilities). The coverage of noninstitutional GQ residents was significantly less than that of noninstitutional GQ residents. Persons in many noninstitutional facilities are harder to reach because they are either seasonal such as residents of college dorms, or move on a regular basis

<sup>25</sup> The estimates of coverage of college/university student housing, military GQs, and other noninstitutional facilities were not statistically different from each other.

<sup>&</sup>lt;sup>26</sup> Starting with the 2013 ACS the ACS will not conduct interviews in the summer months at college/university student housing.

such as residents of military facilities. Other noninstitutional facilities include homeless shelters and halfway houses where people do not want to stay for long periods, religious facilities and soup kitchens whose residents do not remain over the long term. In contrast, institutional GQ residents stay in place over the long term and are carefully managed, with good records being kept for them.

**Table 36**: Coverage by Institutional and Noninstitutional Group Quarters

|                  | 2010 Census Count | Coverage Ratio | MOE   |
|------------------|-------------------|----------------|-------|
| Noninstitutional | 3,995,453         | 0.641          | 0.014 |
| Institutional    | 3,991,870         | 0.979          | 0.019 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 37 we see the coverage ratios of the GQ population by state. The state coverage ratios were generally less than 1.0. Of the 51 state equivalents, 43 showed undercoverage of the GQ population and only Georgia (1.076) showed statistically significant overcoverage.

 Table 37: Group Quarters Person Coverage by State

| Table 37. Group Quarters Ferson Coverage by State               |                   |                |       |  |  |
|-----------------------------------------------------------------|-------------------|----------------|-------|--|--|
| State                                                           | 2010 Census Count | Coverage Ratio | MOE   |  |  |
| AL                                                              | 115,816           | 0.779          | 0.054 |  |  |
| AK                                                              | 26,352            | 0.690          | 0.196 |  |  |
| AZ                                                              | 139,384           | 0.799          | 0.075 |  |  |
| AR                                                              | 78,931            | 0.978          | 0.151 |  |  |
| CA                                                              | 819,816           | 0.820          | 0.030 |  |  |
| CO                                                              | 115,878           | 0.918          | 0.073 |  |  |
| CT                                                              | 118,152           | 0.749          | 0.045 |  |  |
| DE                                                              | 24,413            | 0.727          | 0.084 |  |  |
| DC                                                              | 40,021            | 0.547          | 0.070 |  |  |
| FL                                                              | 421,709           | 0.768          | 0.037 |  |  |
| GA                                                              | 253,199           | 1.076          | 0.065 |  |  |
| HI                                                              | 42,880            | 0.430          | 0.107 |  |  |
| ID                                                              | 28,951            | 0.637          | 0.068 |  |  |
| IL                                                              | 301,773           | 0.792          | 0.032 |  |  |
| IN                                                              | 186,923           | 0.873          | 0.058 |  |  |
| IA                                                              | 98,112            | 0.790          | 0.056 |  |  |
| KS                                                              | 79,074            | 0.812          | 0.091 |  |  |
| KY                                                              | 125,870           | 0.967          | 0.109 |  |  |
| LA                                                              | 127,427           | 0.970          | 0.083 |  |  |
| ME                                                              | 35,545            | 0.601          | 0.088 |  |  |
| MD                                                              | 138,375           | 0.770          | 0.061 |  |  |
| MA                                                              | 238,882           | 0.739          | 0.056 |  |  |
| MI                                                              | 229,068           | 0.805          | 0.042 |  |  |
| MN                                                              | 135,395           | 0.749          | 0.045 |  |  |
| MS                                                              | 91,964            | 1.001          | 0.094 |  |  |
| MO                                                              | 174,142           | 0.798          | 0.064 |  |  |
| MT                                                              | 28,849            | 0.776          | 0.113 |  |  |
| NE                                                              | 51,165            | 0.782          | 0.122 |  |  |
| NV                                                              | 36,154            | 0.738          | 0.086 |  |  |
| NH                                                              | 40,104            | 0.855          | 0.171 |  |  |
| NJ                                                              | 186,876           | 0.988          | 0.062 |  |  |
| NM                                                              | 42,629            | 0.528          | 0.072 |  |  |
| NY                                                              | 585,678           | 0.793          | 0.028 |  |  |
| NC                                                              | 257,246           | 0.770          | 0.051 |  |  |
| ND                                                              | 25,056            | 0.786          | 0.079 |  |  |
| ОН                                                              | 306,266           | 0.844          | 0.054 |  |  |
| OK                                                              | 112,017           | 0.810          | 0.067 |  |  |
| OR                                                              | 86,642            | 0.669          | 0.052 |  |  |
| Source: 2010 American Community Survey 1-year Data and 2010 Cen |                   |                |       |  |  |

Table 37 Continued: Group Quarters Person Coverage by State

| State | 2010 Census Count | Coverage Ratio | MOE   |
|-------|-------------------|----------------|-------|
| PA    | 426,113           | 0.853          | 0.046 |
| RI    | 42,663            | 0.674          | 0.053 |
| SC    | 139,154           | 0.785          | 0.054 |
| SD    | 34,050            | 0.830          | 0.190 |
| TN    | 153,472           | 0.823          | 0.074 |
| TX    | 581,139           | 0.751          | 0.031 |
| UT    | 46,152            | 0.623          | 0.099 |
| VT    | 25,329            | 0.669          | 0.064 |
| VA    | 239,834           | 0.768          | 0.058 |
| WA    | 139,375           | 0.733          | 0.069 |
| WV    | 49,382            | 0.751          | 0.063 |
| WI    | 150,214           | 0.823          | 0.060 |
| WY    | 13,712            | 1.032          | 0.335 |

Table 38 shows the coverage ratios by major type of GQ for Georgia and Florida. Its purpose is to reveal if there was one major GQ type that was driving the coverage ratios for states with relatively extreme GQ person coverage ratios. We included Georgia in this table because it was the only state that showed overcoverage of its GQ residents, and Florida because it had undercoverage and a large GQ population. We note that in general, the state by major GQ type coverage ratios are less reliable because of high sampling variation and differences in the ACS GQ sampling frame from the 2010 Census GQ enumeration listing. For this reason we did not provide all of the state by major GQ type coverage ratios.

**Table 38**: Group Quarters Person Coverage by Major Group Quarters Type for Select States

|       |                                    | 2010 Census | Coverage |       |
|-------|------------------------------------|-------------|----------|-------|
| State | Major GQ Type                      | Count       | Ratio    | MOE   |
| FL    | Adult correctional facilities      | 167,447     | 0.958    | 0.046 |
|       | Juvenile facilities                | 10,061      | 0.551    | 0.328 |
|       | Nursing/skilled nursing facilities | 73,372      | 1.012    | 0.098 |
|       | Other health care facilities       | 3,620       | 0.692    | 0.440 |
|       | College/university student housing | 85,243      | 0.511    | 0.094 |
|       | Military group quarters            | 14,618      | 0.443    | 0.164 |
|       | Other noninstitutional facilities  | 67,348      | 0.461    | 0.093 |
| GA    | Adult correctional facilities      | 103,940     | 1.617    | 0.118 |
|       | Juvenile facilities                | 3,967       | 1.042    | 1.106 |
|       | Nursing/skilled nursing facilities | 34,738      | 0.998    | 0.146 |
|       | Other health care facilities       | 1,828       | 0.823    | 0.473 |
|       | College/university student housing | 72,288      | 0.338    | 0.070 |
|       | Military group quarters            | 16,144      | 1.135    | 0.349 |
|       | Other noninstitutional facilities  | 20,294      | 1.046    | 0.173 |

Source: 2010 American Community Survey 1-year Data and 2010 Census Data

In Table 38 we see that Florida showed neither overcoverage nor undercoverage of residents living in adult correctional facilities and nursing/skilled nursing facilities, and other health care facilities. Florida had undercoverage of persons living in juvenile facilities,  $(0.551)^{27}$ , student/university housing (0.511), military facilities (0.443), and other noninstitutional facilities (0.461). These four major GQ types in Florida account for why Florida had a net undercoverage of GQ population. Georgia, on the other hand, showed a large overcoverage of the adult correctional facility population (1.617). The other major types of GQ facilities did not show significant overcoverage. The net overcoverage of GQ persons in Georgia is directly attributable to the larger overcoverage of persons residing in adult correctional facilities.

## 8. Puerto Rico Community Survey Coverage

As we explained in Section 4, for PRCS HU coverage we compared the pre-controlled 2009 PRCS 1-year estimates to the 2010 Census counts. In Table 39 we see the coverage ratio for HUs, 0.873, was much smaller than for the nation or for any states. This is because the PRCS HU sampling frame is not regularly updated the way the ACS HU sampling frame is. The comparison to 2009 exaggerates this effect modestly, as we can expect normal growth in the HU inventory from 2009 to 2010. For the 2010 PRCS 1-year pre-controlled estimate the coverage was close to 1.0 (not shown in any table).

\_

<sup>&</sup>lt;sup>27</sup> The estimates of coverage of persons in Florida's juvenile facilities, college/university student housing, military GQs, and other noninstitutional facilities were not significantly different from each other.

Table 39: 2009 Puerto Rico Housing Unit Coverage

| 2010 Census | 2009 ACS  | Coverage Ratio | MOE   |
|-------------|-----------|----------------|-------|
| 1,636,946   | 1,428,562 | 0.873          | 0.004 |

The coverage ratio for the total resident population in Puerto Rico (0.942) showed undercoverage (see Table 40). This coverage ratio did not differ significantly from the United States coverage ratio of 0.948 (seen in Table 11). Note that for the PRCS we did not present the coverage ratios for the household population because of concerns about the interpretation of HU coverage error.

Table 40: Puerto Rico Person Coverage of the Total Resident Population

| 2010 Census Count | Coverage Ratio | MOE   |
|-------------------|----------------|-------|
| 3,725,789         | 0.942          | 0.009 |

Source: 2010 Puerto Rico Community Survey 1-year Data and 2010 Census Data

Table 41 shows the coverage in Puerto Rico by age group. For the PRCS we did not investigate the coverage of race/ethnicity. Noteworthy is that the PRCS followed a different pattern of coverage by age group than that seen in the ACS. In the ACS the coverage ratios were lowest for the age groups 18-19 and 20-24. However, in the PRCS, the age groups 25-29, 30-34, and 25-34 had lower coverage than the age groups 18-19 and 20-24. Further, the coverage of the 0-4 age group was much lower in the PRCS at 0.874 than in the ACS at 0.948 (seen in Table 13). In contrast, consistent with the ACS, in the PRCS the coverage ratios for age groups 65-74  $(1.056)^{28}$  and 75+(1.046) were among the highest.

Table 41: Puerto Rico by Age Group

|       | 2010    |          |       |
|-------|---------|----------|-------|
|       | Census  | Coverage |       |
| Age   | Count   | Ratio    | MOE   |
| 0-4   | 224,756 | 0.874    | 0.037 |
| 5-14  | 508,575 | 0.922    | 0.025 |
| 15-17 | 169,964 | 0.942    | 0.042 |
| 18-19 | 114,295 | 0.936    | 0.046 |
| 20-24 | 260,850 | 0.916    | 0.036 |
| 25-29 | 244,159 | 0.857    | 0.031 |
| 30-34 | 248,173 | 0.873    | 0.027 |
| 35-44 | 483,528 | 0.872    | 0.024 |
| 45-49 | 247,986 | 0.960    | 0.031 |
| 50-54 | 239,821 | 0.986    | 0.032 |
| 55-64 | 441,684 | 1.014    | 0.028 |
| 65-74 | 311,662 | 1.056    | 0.027 |
| 75+   | 230,336 | 1.046    | 0.034 |

Source: 2010 Puerto Rico Community Survey 1-year Data and 2010 Census Data

<sup>28</sup> The estimates of coverage for the age groups 65-74 and 75+ were not significantly different.

Consistent with the ACS, the coverage ratio for females was greater than the coverage ratio for males in Puerto Rico (see Table 42).

**Table 42**: Puerto Rico Coverage by Sex

| Female            |       | Male              |       | Total             |       |
|-------------------|-------|-------------------|-------|-------------------|-------|
| Coverage<br>Ratio | MOE   | Coverage<br>Ratio | MOE   | Coverage<br>Ratio | MOE   |
| 0.954             | 0.010 | 0.930             | 0.011 | 0.942             | 0.009 |

Source: 2010 Puerto Rico Community Survey 1-year Data and 2010 Census Data

Coverage of GQ persons in Puerto Rico showed undercoverage at 0.664 (see Table 43), consistent with ACS GQ person coverage. However, it was substantially lower than the overall ACS GQ person coverage ratio of 0.810.

**Table 43**: Puerto Rico Group Quarters Population Coverage

| State       | 2010 Census<br>Count | Coverage<br>Ratio | MOE   | Significant |
|-------------|----------------------|-------------------|-------|-------------|
| Puerto Rico | 37,955               | 0.664             | 0.144 | Yes         |

Source: 2010 Puerto Rico Community Survey 1-year Data and 2010 Census Data

## 9. Tract-Level Analyses of Coverage

In previous sections we examined the coverage based on groups of persons defined by individual demographic characteristics. In this section we considered the coverage of persons in groups of tracts defined by features of interest. We wanted to determine any geography effects that went beyond the characteristics of the individual persons in the tract. Thus we characterized tracts by features of interest and examined the mean coverage ratios of these tracts. The characteristics we used to group tracts were population density, proportion renter/owner, degree of race/ethnic homogeneity, and proportion non-Hispanic Black.

Note that all tracts here were given equal weight in the calculation of their coverage ratios and the results from these tables exclude tracts with zero population counts. Furthermore, the coverage ratios for tracts consistently were less than national results seen elsewhere in this paper because these analyses used 2006-2010 ACS 5-year estimates, which have systematically lower coverage ratios than the 2010 ACS 1-year estimates because of population growth (see Section 6, Limitations, for more discussion on this point).

**Table 44**: Tract Coverage by Population Density

|                |                  | Mean                     |       |
|----------------|------------------|--------------------------|-------|
|                | Number of Tracts | Coverage Ratio of Tracts | MOE   |
| Densest third  | 24,475           | 0.927                    | 0.001 |
| Middle third   | 24,475           | 0.942                    | 0.001 |
| Sparsest third | 24,476           | 0.943                    | 0.005 |

Source: 2006-2010 American Community Survey 5-year Data and 2010 Census Data

In Table 44, we investigated how population density of tracts affected coverage. As seen in Table 44, more densely populated areas had lower coverage ratios than sparsely populated areas. The densest third (0.927) had significantly lower coverage than the middle third<sup>29</sup> (0.942) and the sparsest third (0.943). Whether this difference was a result of persons or HUs having lower coverage (perhaps having more minorities), or whether there was a density effect in itself at work, is not clear from this table.

Table 45: Tract Coverage by Proportion Owner/Renter

|                |                  | Mean                     |       |
|----------------|------------------|--------------------------|-------|
| Percent Renter | Number of Tracts | Coverage Ratio of Tracts | MOE   |
| 60%+           | 11,642           | 0.912                    | 0.004 |
| 40%-60%        | 14,310           | 0.934                    | 0.002 |
| Less than 40%  | 47,368           | 0.944                    | 0.002 |

Source: 2006-2010 American Community Survey 5-year Data and 2010 Census Data

In Table 45, we examined coverage ratios of tracts by their proportion of owners and renters. The tracts with the 60 percent or more of renters (0.912) had a lower coverage ratios than tracts with between 40 and 60 percent renters (0.934) and less than 40 percent renters (0.944). Also, note that the difference between tracts with between 40 and 60 percent renters and less than 40 percent renters was statistically significant. The results seen here were consistent with 2010 Census Coverage Measurement results, (Mule, 2012) which showed higher coverage ratios for owners than renters. However, as with the analysis of tracts grouped by density, this analysis does not establish a geography effect that goes beyond the already known undercoverage of persons in rented HUs.

**Table 46:** Tract Coverage by Degree of Racial/Ethnic Homogeneity

| Largest Racial/ |                  | Mean                     |       |
|-----------------|------------------|--------------------------|-------|
| Ethnic Group    | Number of Tracts | Coverage Ratio of Tracts | MOE   |
| 75%+            | 43,282           | 0.950                    | 0.003 |
| 50%-75%         | 23,046           | 0.921                    | 0.002 |
| Less than 50%   | 7,098            | 0.911                    | 0.002 |

Source: 2006-2010 American Community Survey 5-year Data and 2010 Census Data

For Table 46, we categorized tracts by degree of racial and ethnic homogeneity (for seven racial/ethnic groups: Hispanic, non-Hispanic white, non-Hispanic Black, non-Hispanic Asian, non-Hispanic AIAN, non-Hispanic Native Hawaiian and Other Pacific Islander, and non-Hispanic some other race). Those tracts with the highest rate of racial and ethnic homogeneity had the highest coverage ratios. The tracts with their largest racial/ethnic group making up more than 75 percent of the total population (0.950) was significantly different from tracts with their largest racial ethnic group making up between 50 and 75 percent (0.921) and less than 50 percent (0.911) of their total population. Also, note that tracts with their largest racial/ethnic group making up 50 to 75 percent of their total population was significantly

<sup>&</sup>lt;sup>29</sup> The difference in coverage between the middle third and sparsest third was not statistically significant.

different than tracts with their largest racial ethnic group making up less than 50 percent of their total population.

 Table 47: Person Coverage of Tracts by Percent Black Alone or in Combination

|                     |                  | Mean Coverage Ratio of  |       |
|---------------------|------------------|-------------------------|-------|
| Percent Black Alone |                  | the Total Population of |       |
| or in Combination   | Number of Tracts | Tracts                  | MOE   |
| 75%+                | 3,527            | 0.912                   | 0.004 |
| 50%-75%             | 2,844            | 0.913                   | 0.007 |
| Less than 50%       | 67,055           | 0.940                   | 0.002 |

Source: 2006-2010 American Community Survey 5-year Data and 2010 Census Data

In Table 47, we categorized tracts by the percentage of their population that was Black and determined the coverage ratio of their total population. Blacks have historically had lower coverage ratios in the census and other surveys. The tracts that had their black population make up more than 75 percent of its total population (0.912) was significantly different than tracts that had their black population make up less than 50 percent of its total population (0.940). The coverage ratios in tracts with predominantly black populations was significantly less than that of tracts where Blacks make up less than 50 percent of the tract's population.

**Table 48**: Coverage of the Black Alone or in Combination by Percent Black Alone or in

**Combination Population** 

|                     |                  | Mean Coverage Ratio of |       |
|---------------------|------------------|------------------------|-------|
|                     |                  | Black Alone or in      |       |
| Percent Black Alone |                  | Combination Population |       |
| or in Combination   | Number of Tracts | of Tracts              | MOE   |
| 75%+                | 3,527            | 0.889                  | 0.004 |
| 50%-75%             | 2,844            | 0.857                  | 0.005 |
| Less than 50%       | 67,055           | 0.851                  | 0.007 |

Source: 2006-2010 American Community Survey 5-year Data and 2010 Census Data

In Table 48, we categorized tracts by the percentage of their population that was Black and determined the coverage ratio of its black population. It was hypothesized that in areas with high concentrations of Blacks, the black population had lower coverage ratios than in tracts with low concentrations of Blacks; see Shapiro and Waksberg (1999). Our results are not consistent with this hypothesis. We see that in tracts whose black population made up more than 75 percent of its total population, the observed coverage ratio (0.889) was higher than that of tracts where Blacks made up 50 to 75 percent of the total population (0.857)<sup>30</sup> and less than 50 percent of the total population (0.851).

<sup>30</sup> The difference in coverage between the tracts where Blacks make up 50 to75 percent of the total population and less than 50 percent of the population is not statistically significant.

In conclusion, except for tracts with concentrations of Blacks, the tract-level analyses did not provide evidence for a tract-level, geography effect that went beyond the characteristics of the persons residing in the tracts.

#### 10. Conclusions

The Census Bureau continually evaluates the quality of the ACS, including publishing annual measures of ACS coverage. These annually produced measures are calculated by comparison to the PEP estimates, which are both dated and limited in detail. Comparing the pre-controlled ACS estimates to the 2010 Census afforded an opportunity to examine the ACS coverage with a fully up-to-date comparison and in greater detail than we could have using the PEP estimates as done in previous years. This proved particularly valuable for examining the coverage of smaller geographic areas such as AIAN areas and tracts, and for states by demographic breakdown. That said, some of the difference between the ACS estimates and the 2010 Census measured for race and ethnicity was attributable to differences between the two surveys in data collection. These issues limit the usefulness of the coverage ratio as a measure of coverage error for race and ethnic groups.

Since we calculated coverage using pre-controlled ACS estimates, without the correction for coverage gained by controlling, the coverage ratios are more a measure of the completeness of the ACS sample frame and of ACS interviewing methods than of the coverage of the published ACS estimates. Nationally, we found patterns of person coverage similar to what has been seen in previous decennial censuses and in the CPS. Demographically, those groups with the highest coverage ratios were non-Hispanic whites, females, and people 65 years and older. We also noted higher coverage ratios in midwestern states, and lower coverage ratios in southern states. In contrast, the ACS coverage of HUs did not follow decennial census patterns. This likely has to do with the complex relationship between the ACS HU sample frame and the decennial master address file (MAF) listing from which it was derived, and with the difficulties in the ACS determinations of vacant HUs. We observed a net undercoverage of persons in the ACS, which was mostly attributable to within-household coverage rather than HU undercoverage.

In the separate analysis of the PRCS we noted overall coverage lower than that of most states, with similar higher coverage for females than males, but with different patterns of coverage for age groups.

Of particular interest was the coverage of AIAN persons and of persons living in AIAN areas. We found that the ACS coverage of people in AIAN areas was generally lower than that of the overall nation, with the coverage of several adult males age groups being lower. However, this undercoverage could not be attributed to persons identified as AIAN alone or in combination, because the coverage ratios differed for persons identified as AIAN alone versus persons identified as AIAN alone or in combination with other race groups. Furthermore, the coverage of AIAN alone or in combination varied widely by state, and the coverage between individual tribal groupings also varied widely. Ultimately, the coverage of AIAN persons and of the

population in AIAN areas cannot be generalized, but must be considered for specific AIAN areas and for specific tribal groupings.

Lastly, we examined the coverage by tract, characterizing tracts by the predominance of several features of interest. Consistent with decennial census studies, we found densely populated tracts and tracts with higher proportions of renters had lower coverage. Generally, we found more race/ethnically homogenous tracts had higher coverage. When we partitioned out Black alone or in combination, we found that Blacks who lived in tracts that had high concentrations of Black alone or in combination had higher coverage ratios than those who lived in tracts with lower concentrations of Black alone or in combination. However, except for this finding, we discovered little about how characteristics of geographic areas affected coverage beyond what we already knew about coverage based on demographic characteristics of the residents.

### 11. Future Research

This research leads naturally to additional questions. An obvious one is, what is the coverage of the 2011 ACS? The only updates from the 2010 Census that the 2010 ACS sample frame incorporated were those from the 2010 Census address canvassing operation. In contrast, the 2011 ACS sample frame more fully incorporated the results of the 2010 Census. In particular, one might hope for better HU coverage on the 2011 ACS sample frame. Some of the analyses conducted here could be fruitfully redone comparing the 2011 ACS with the 2010 Census, in particular, the coverage of HUs. Also, the higher coverage of multi-unit HUs invites investigation. And clearly, there is more to understand about differences in race reporting between the ACS and the 2010 Census. A potential approach to measuring race reporting differences is to link ACS 1-year 2010 persons to the 2010 Census record and compare the race. The difference between the ACS and 2010 Census vacancy rates continues to be investigated. Lastly, the tract-level analyses might yield more insight on geographic effects with a multivariate rather than a univariate approach.

### References

- Asiala, M., Beaghen, M., and Albright, K. (2008). "Evaluating Use of Alternative Population Controls for American Community Survey Weighting Methodology". 2008 Joint Statistical Meetings: Proceedings of the Section on Survey Research Methods. American Statistical Association.
- Bennett, C. and Griffin, D. (2002). "Race and Hispanic Origin Data: A Comparison of Results from the Census 2000 Supplementary Survey and Census 2000". 2002 Joint Statistical Meetings: Proceedings of the Section on Survey Research Methods. American Statistical Association.
- Bray, R. (2012). "Estimates of Correct and Erroneous Enumeration with Duplicates in the 2010 U.S. Census". 2012 Joint Statistical Meetings: Proceedings of the Section on Government Statistics. American Statistical Association.

- Cresce, A. (2012). "Evaluation of Gross Vacancy Rates From the 2010 Census Versus Current Surveys: Early Findings from Comparisons with the 2010 Census and the 2010 ACS 1-Year Estimates". Proceedings from the 2012 Federal Committee on Statistical Methodology Research Conference.
- Hefter, S. and Anderson, O. (2012). "Understanding the Causes of the Differences Between the 2010 American Community Survey and the 2010 Decennial Census Vacancy Rates". Census Bureau research memorandum in progress.
- Mule, T. (2012). "2010 Census Coverage Measurement Estimation Report: Summary of Estimates of Coverage for Persons in the United States". Census Bureau memorandum, DSSD 2010 Census Coverage Measurement Memorandum Series #2010-G-01. <a href="http://www.census.gov/coverage\_measurement/pdfs/g01.pdf">http://www.census.gov/coverage\_measurement/pdfs/g01.pdf</a>
- Mule, T. and Konicki, S. (2012). "Summary of Estimates of Coverage for Housing Units in the United States". 2010 CCM Summary Reports, G-02. http://www.census.gov/coverage\_measurement/pdfs/g02.pdf
- National Research Council (2004). "The 2000 Census: Counting Under Adversity". Panel to the 2000 Census. Washington, DC: The National Academies Press.
- Pinal, J. del, and Schmidley, D. (2005). "Matched Race and Hispanic Origin Responses from Census 2000 and Current Population Survey February to May 2000". U.S. Census Bureau Population Division Working Paper Series. http://www.census.gov/population/www/documentation/twps0079/twps0079.pdf
- Neter, J., Wasserman, W., and Kutner, M. (1985). "Applied Linear Statistical Models". pp 150-154. Homewood, Illinois: Richard D. Irwin Inc.
- Raglin, D. and Leslie, T. (2002). "How Consistent is Race Reporting Between the Census and the Census 2000 Supplementary Survey?" 2002 Joint Statistical Meetings: Proceedings of the Section on Survey Research Methods. American Statistical Association.
- Shapiro, G. and Waksberg J. (1999). "Coverage Analysis for the American Community Survey". Internal Memorandum, U.S. Census Bureau.
- U.S. Census Bureau (2009). "Design and Methodology: American Community Survey". Issued April 2009. http://www.census.gov/acs/www/Downloads/dm1.pdf
- U.S. Census Bureau (2010). "2010 Census Press Kits: Address Canvassing Facts/Statistics" <a href="http://2010.census.gov/news/press-kits/one-year-out/address-canvasing/address-canvassing-facts-statistics.html">http://2010.census.gov/news/press-kits/one-year-out/address-canvasing/address-canvassing-facts-statistics.html</a>
- U.S. Census Bureau (2012a). "Population Estimates: Population and Housing Estimates". <a href="http://www.census.gov/popest/">http://www.census.gov/popest/</a>
- U.S. Census Bureau (2012b). Coverage Measurement. U.S. Census Bureau Web site. http://www.census.gov/coverage measurement/
- U.S. Census Bureau (2012c). "American Community Survey: Data Quality and Sample Size".

  U.S. Census Bureau Web site,

  <a href="http://www.census.gov/acs/www/methodology/sample\_size\_and\_data\_quality/">http://www.census.gov/acs/www/methodology/sample\_size\_and\_data\_quality/</a>
- <u>U.S. Census Bureau (2012d). Current Population Survey: Coverage Ratios.</u> <u>http://www.census.gov/cps/methodology/coverage.html</u>
- U.S. Census Bureau (2012e). Census Bureau Regions and Divisions with State FIPS Codes. U.S. Census Bureau Web site. http://www.census.gov/geo/www/reg\_div.txt